Self-Heating Analysis of 1570 nm InGaAsP Buried Tunnel Junction Photonic Crystal VCSEL

Autores

DOI:

https://doi.org/10.15628/holos.2018.7950

Palavras-chave:

Self-heating analysis, InGaAsP, Buried tunnel junction (BTJ), Photonic crystal (PhC), Vertical-cavity surface-emitting laser (VCSEL).

Resumo

In this paper, the lattice temperature in an InP-based 1570 nm InGaAsP buried tunnel junction photonic crystal vertical-cavity surface-emitting laser (BTJ-PhC VCSEL) was varied between 280 K until 370 K and its effects on the characteristics of the device was investigated. The temperature profiles of the BTJ-PhC VCSEL are obtained iteratively by considering their temperature-dependent material properties and the spatial distribution of all the significant heat sources. The thermal resistance used to model the electrical contacts causes about 8 K temperature increment above the ambient temperature (300 k) at a bias of 3 V and a 10.865 % increase in the threshold current is observed with temperature increment. This paper provides key results of the device characteristics upon lattice temperature, including the light power versus electrical voltage, the threshold current versus temperature, the wall-plug efficiency and the differential quantum efficiency versus temperature. Furthermore, various elements of heat sources within the active region were analyzed upon the increment of lattice temperature.

Downloads

Não há dados estatísticos.

Referências

Atlas - Device Simulation Framework. (2018). http://www.silvaco.com/products/device_simulation/atlas.html

Behrouzinia, S., Khorasani, K., Marjani, S., Sabaghi, M., Aeinehvand, M. E., & Mohammadpour, S. (2016). Experimental Study of Buffer Gas Flow Rate Effect on Output Power of a Copper Vapor Laser. Optics and Photonics Journal, 06(02), 24-28.

Deppe, D. G., Li, M., Yang, X., & Bayat, M. (2018). Advanced VCSEL Technology: Self-Heating and Intrinsic Modulation Response. IEEE Journal of Quantum Electronics, 54(3), 1-9.

Faez, R., Marjani, A., & Marjani, S. (2011). Design and simulation of a high power single mode 1550nm InGaAsP VCSELs. IEICE Electronics Express, 8(13), 1096-1101.

Khafaji, M., Pliva, J., Henker, R., & Ellinger, F. (2018). A 42-Gb/s VCSEL Driver Suitable for Burst Mode Operation in 14-nm Bulk CMOS. IEEE Photonics Technology Letters, 30(1), 23-26.

Majdabadi, A., Marjani, S., & Sabaghi, M. (2014). Threshold Characteristics Enhancement of a Single Mode 1.55 µm InGaAsP Photonic Crystal VCSEL for Optical Communication Systems. Optics and Photonics Journal, 04(10), 296-303.

Marjani, S. (2013). Optimization of an InGaAsP Vertical-Cavity Surface-Emitting Diode Lasers for High-Power Single-Mode Operation in 1550 nm Optical-Fibre Communication Systems. Asian Journal of Chemistry, 25(8), 4150–4152.

Marjani, S., Faez, R., & Marjani, H. (2011). Analysis and design of semiconductor laser with silicon carbide polymers (6H-SiC and 3C-SiC). Asian Journal of Chemistry, 5(7), 1060–1063.

Marjani, S., Faez, R., & Marjani, A. (2011). Design and modeling of a high single mode power long wavelength InGaAsP photonic crystal VCSEL. Australian Journal of Basic and Applied Sciences, 5(7), 1064–1069.

Marjani, S., Rahnama, M., & Marjani, H. (2011). Numerical optimization of single-mode InGaAsP vertical-cavity surface-emitting lasers. Australian Journal of Basic and Applied Sciences, 5(11), 1207–1211.

Marjani, S., Faez, R., & Marjani, H. (2012). Design and Modeling of a Semiconductor Laser by Employing Silicon Carbide Polymers (6H-SiC, 3C-SiC and 4H-SiC). Asian Journal of Chemistry, 24(5), 2177–2179.

Marjani, S., Faez, R., & Hosseini, S. E. (2013). Analysis of Lattice Temperature Effects on a GaInP/6H-SiC Strained Quantum-Well Lasers. Asian Journal of Chemistry, 25(9), 4715–4717.

Marjani, S., & Marjani, H. (2012). Effects of hole etching depth in a long wavelength InGaAsP photonic crystal vertical cavity surface emitting laser. Asian Journal of Chemistry, 24(7), 3194–3196.

Marjani, S., & Marjani, H. (2012). Optimization of a long wavelength vertical-cavity surface-emitting lasers by employing photonic crystal. Asian Journal of Chemistry, 24(7), 3174–3176.

Mehta, K., Liu, Y., Wang, J., Jeong, H., Detchprohm, T., Park, Y. J., … Yoder, P. D. (2018). Lateral Current Spreading in III-N Ultraviolet Vertical-Cavity Surface-Emitting Lasers Using Modulation-Doped Short Period Superlattices. IEEE Journal of Quantum Electronics, 54(4), 1-7.

Mirzaei, M., Behrouzinia, S., Sabaghi, M., Marjani, S., Khorasani, K., & Sajad, B. (2016). Experimental Optimization of the Output Power of a Copper Vapor Laser Using Air as a Buffer Gas. Optics and Photonics Journal, 06(04), 53-59.

Ng, W., Liu, Y., & Hess, K. (2004). Lattice Temperature Model and Temperature Effects in Oxide-Confined VCSEL’s. Journal of Computational Electronics, 3(2), 103-116.

Numai, T. (2016). Fundamentals of semiconductor lasers. Springer Verlag, Japan.

Piprek, J. (2003). Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. UCSB: Academic Press, 9-50 and 141-147.

Piprek, J., Abraham, P., & Bowers, J. (2000). Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers. IEEE Journal of Quantum Electronics, 36(3), 366-374.

Piprek, J., Babi?, D. I., & Bowers, J. E. (1997). Simulation and analysis of 1.55 ?m double-fused vertical-cavity lasers. Journal of Applied Physics, 81(8), 3382-3390.

Piprek, J., White, J., & SpringThorpe, A. (2002). What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes? IEEE Journal of Quantum Electronics, 38(9), 1253-1259.

Qi, C., Shi, X., & Wang, G. (2010). Thermal circuit model of MQW VCSEL laser. 2010 International Conference on Microwave and Millimeter Wave Technology.

Rissons, A., Mollier, J., Toffano, Z., Destrez, A., & Pez, M. M. (2003). Thermal and optoelectronic model of VCSEL arrays for short-range communication. Vertical-Cavity Surface-Emitting Lasers VII, 100-111.

Streiff, M., Witzig, A., Pfeiffer, M., Royo, P., & Fichtner, W. (2003). A comprehensive VCSEL device simulator. IEEE Journal of Selected Topics in Quantum Electronics, 9(3), 879-891.

Szilagyi, L., Khafaji, M., Pliva, J., Henker, R., & Ellinger, F. (2018). 40-Gbit/s 850-nm VCSEL-Based Full-CMOS Optical Link With Power-Data Rate Adaptivity. IEEE Photonics Technology Letters, 30(7), 611-613.

Downloads

Publicado

31/12/2018

Como Citar

Sabaghi, M. (2018). Self-Heating Analysis of 1570 nm InGaAsP Buried Tunnel Junction Photonic Crystal VCSEL. HOLOS, 8, 35–48. https://doi.org/10.15628/holos.2018.7950

Edição

Seção

ARTIGOS

Artigos Semelhantes

<< < 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.