Analysis of Silicon Carbide Polymorphs Substrates Effect on Performances of AlGaN/GaN Double Quantum Well HEMTs
DOI:
https://doi.org/10.15628/holos.2019.8192Palavras-chave:
Silicon carbide polymorphss, 6H-SiC, 3C-SiC, 4H-SiC, AlGaN/GaN, Minimum noise figure (NFmin), Double quantum well, High electron mobility transistors (HEMTs).Resumo
AlGaN/GaN high electron mobility transistors (HEMTs) have established terrific features in the high-power and high-frequency applications of microwave device. In this paper, the impact of silicon carbide polymorphs substrates including 6H-SiC, 3C-SiC and 4H-SiC on the performances of AlGaN/GaN double quantum well HEMTs (DQW-HEMTs) are analyzed and investigated. The results show that the devices with 4H-SiC and 6H-SiC substrates exhibit a higher transconductance of about 192 ms/mm at VDS = 15 V and a lower minimum noise figure (NFmin) of 0.48 and 0.42 dB at 10 GHz than those of devices with 3C-SiC, respectively. Whereas, DC-HEMT with 3C-SiC substrate has a transconductance of about 180 ms/mm at VDS = 15 V and a minimum noise figure of 3.01 dB at 10 GHz. On the other hands, the DC-HEMT with 3C-SiC substrate has lower drain gate capacitance (Cdg) and higher cut-off frequency (ft) than DC-HEMT with 4H-SiC and 6H-SiC substrates. The results demonstrate that AlGaN/GaN DH-HEMTs 4H-SiC and 6H-SiC substrates are promising devices for future high-power and high-frequency electron device applications.Downloads
Referências
Atlas - Device Simulation Framework. (2018). http://www.silvaco.com/products/device_simulation/atlas.html
Chu, R., Zhou, Y., Liu, J., Wang, D., Chen, K., & Lau, K. (2005). AlGaN-GaN Double-Channel HEMTs. IEEE Transactions on Electron Devices, 52(4), 438-446.
Coffa, S., Saggio, M., & Patti, A. (2015). SiC- and GaN-based power devices: Technologies, products and applications. IEEE International Electron Devices Meeting (IEDM), 16.8.1–16.8.5.
Cornigli, D., Reggiani, S., Gnani, E., Gnudi, A., Baccarani, G., Moens, P., … Meneghesso, G. (2015). Numerical investigation of the lateral and vertical leakage currents and breakdown regimes in GaN-on-Silicon vertical structures. IEEE International Electron Devices Meeting (IEDM), 5.3.1–5.3.4.
Deboy, G., Treu, M., Haeberlen, O., & Neumayr, D. (2016). Si, SiC and GaN power devices: An unbiased view on key performance indicators. IEEE International Electron Devices Meeting (IEDM), 20.2.1–20.2.4.
Di Cioccio, L., Morvan, E., Charles, M., Perichon, P., Torres, A., Ayel, F., … Plissonnier, M. (2015). From epitaxy to converters topologies what issues for 200 mm GaN/Si? IEEE International Electron Devices Meeting (IEDM), 16.5.1–16.5.4.
Guo, L., Wang, X., Wang, C., Xiao, H., Ran, J., Luo, W., … Hu, G. (2008). The influence of 1nm AlN interlayer on properties of the Al0.3Ga0.7N/AlN/GaN HEMT structure. Microelectronics Journal, 39(5), 777-781.
Haifeng Sun, Alt, A., Benedickter, H., & Bolognesi, C. (2009). High-Performance 0.1-$muhbox{m}$ Gate AlGaN/GaN HEMTs on Silicon With Low-Noise Figure at 20 GHz. IEEE Electron Device Letters, 30(2), 107-109.
Hashizume, T., Nishiguchi, K., Kaneki, S., Kuzmik, J., & Yatabe, Z. (2018). State of the art on gate insulation and surface passivation for GaN-based power HEMTs. Materials Science in Semiconductor Processing, 78, 85-95.
Ishida, H., Kajitani, R., Kinoshita, Y., Umeda, H., Ujita, S., Ogawa, M., … Ueda, T. (2016). GaN-based semiconductor devices for future power switching systems. IEEE International Electron Devices Meeting (IEDM), 20.4.1–20.4.4.
Kim, Z., Lee, H., Na, J., Bae, S., Nam, E., & Lim, J. (2018). Ultra-low rate dry etching conditions for fabricating normally-off field effect transistors on AlGaN/GaN heterostructures. Solid-State Electronics, 140, 12-17.
Koller, C., Pobegen, G., Ostermaier, C., & Pogany, D. (2017). Evidence of defect band in carbon-doped GaN controlling leakage current and trapping dynamics. IEEE International Electron Devices Meeting (IEDM), 33.4.1–33.4.4.
Lidow, A., Reusch, D., & Glaser, J. (2016). System level impact of GaN power devices in server architectures. IEEE International Electron Devices Meeting (IEDM), 20.3.1–20.3.4.
Majdabadi, A., Marjani, S., & Sabaghi, M. (2014). Threshold Characteristics Enhancement of a Single Mode 1.55 µm InGaAsP Photonic Crystal VCSEL for Optical Communication Systems. Optics and Photonics Journal, 04(10), 296-303.
Marjani, A., Marjani, S., & Shirazian, S. (2011). Numerical simulation of silicon carbide polymers (6H-SiC & 3C-SiC) as the active area for 0.83 ?m wavelength semiconductor Laser. The 14th Iranian Physical Chemistry Conferenc, 876–878.
Marjani, S., Faez, R., & Marjani, H. (2011). Analysis and design of semiconductor laser with silicon carbide polymers (6H-SiC and 3C-SiC). Australian Journal of Basic and Applied Sciences, 5(7), 1060–1063.
Marjani, S., Faez, R., & Marjani, M. (2012). Design and modeling of a semiconductor laser by employing silicon carbide polymers (6H-SiC, 3C-SiC and 4H-SiC). Asian Journal of Chemistry, 24(5), 2177–2179.
Marjani, S., Faez, R., & Marjani, H. (2012). Analysis of the various elements of heat sources in silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser. Asian Journal of Chemistry, 24(5), 2333–2335.
Marjani, S., Faez, R., & Hosseini, S. E. (2013). Analysis of lattice temperature effects on a GaInP/6H-SiC strained quantum-well lasers. Asian Journal of Chemistry, 25(9), 4715–4717.
Marjani, S., & Hosseini, S. E. (2014). Radio-frequency modeling of square-shaped extended source tunneling field-effect transistors. Superlattices and Microstructures, 76, 297-314.
Marjani, S., & Hosseini, S. E. (2015). Radio-frequency small-signal model of hetero-gate-dielectric p-n-p-n tunneling field-effect transistor including charge conservation capacitance and substrate parameters. Journal of Applied Physics, 118(9), 095708-1–095708-8.
Marjani, S., Hosseini, S. E., & Faez, R. (2016). A silicon doped hafnium oxide ferroelectric p–n–p–n SOI tunneling field–effect transistor with steep subthreshold slope and high switching state current ratio. AIP Advances, 6(9), 095010-1–095010-7.
Marjani, S., Hosseini, S. E., & Faez, R. (2016). A 3D analytical modeling of tri-gate tunneling field-effect transistors. Journal of Computational Electronics, 15(3), 820-830.
Marjani, S., Khosroabadi, S., & Ebrahim Hosseini, S. (2017). Enhanced Characteristics of Square-Shaped Extended Source TFET Via Silicon Carbide Polytype (3C-SiC) and a Dopant Pocket Layer. Oriental Journal of Chemistry, 33(3), 1083-1089.
Marjani, S., & Marjani, H. (2012). Self-heating effects in a silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser. Asian Journal of Chemistry, 24(7), 3145–3147.
Marjani, S., & Marjani, H. (2012). Effects of lattice temperature on the various elements of heat sources in silicon carbide polymers (6H-SiC and 3C-SiC) semiconductor laser. Asian Journal of Chemistry, 24(7), 3123–3125.
Marjani, S., & Marjani, H. (2012). Effects of hole etching depth in a long wavelength InGaAsP photonic crystal vertical cavity surface emitting laser. Asian Journal of Chemistry, 24(7), 3194–3196.
Meneghini, M., Tajalli, A., Moens, P., Banerjee, A., Stockman, A., Tack, M., … Meneghesso, G. (2017). Total suppression of dynamic-ron in AlGaN/GaN-HEMTs through proton irradiation. IEEE International Electron Devices Meeting (IEDM), 33.5.1–33.5.4.
Muranaka, T., Kikuchi, Y., Yoshizawa, T., Shirakawa, N., & Akimitsu, J. (2008). Superconductivity in carrier-doped silicon carbide. Science and Technology of Advanced Materials, 9(4), 044204.
Neudeck, P. (2001). Silicon Carbide Electronic Devices. Encyclopedia of Materials: Science and Technology, 9, 8508-8519.
Qi, Y., Zhu, Y., Zhang, J., Lin, X., Cheng, K., Jiang, L., & Yu, H. (2018). Evaluation of LPCVD SiNx Gate Dielectric Reliability by TDDB Measurement in Si-Substrate-Based AlGaN/GaN MIS-HEMT. IEEE Transactions on Electron Devices, 65(5), 1759-1764.
Raciti, A., Cristaldi, D., Greco, G., Vinci, G., & Bazzano, G. (2014). Integrated power electronics modules: Electro-thermal modeling flow and stress conditions overview. AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer (AEIT), 1–6.
Radhakrishna, U., Lim, S., Choi, P., Palacios, T., & Antoniadis, D. (2015). GaNFET compact model for linking device physics, high voltage circuit design and technology optimization. IEEE International Electron Devices Meeting (IEDM), 9.6.1–9.6.4.
Sabaghi, M., Dashtbayazi, M., & Marjani, S. (2016). Dynamic Hysteresis Band Fixed Frequency Current Control. World Applied Programming, 6(1), 1-4.
Sabaghi, M., Majdabadi, A., Marjani, S., & Khosroabadi, S. (2015). Optimization of High-Efficiency CdS/CdTe Thin Film Solar Cell Using Step Doping Grading and Thickness of the Absorption Layer. Oriental Journal of Chemistry, 31(2), 891-896.
Sanabria, C. (2006). Noise of AlGaN/GaN HEMTs and Oscillators. University of California, Santa Barbara.
Stoffels, S., Zhao, M., Venegas, R., Kandaswamy, P., You, S., Novak, T., … Decoutere, S. (2015). The physical mechanism of dispersion caused by AlGaN/GaN buffers on Si and optimization for low dispersion. IEEE International Electron Devices Meeting (IEDM), 35.4.1–35.4.4.
Then, H. W., Chow, L. A., Dasgupta, S., Gardner, S., Radosavljevic, M., Rao, V. R., … Fischer, P. (2015). High-K gate dielectric depletion-mode and enhancement-mode GaN MOS-HEMTs for improved OFF-state leakage and DIBL for power electronics and RF applications. IEEE International Electron Devices Meeting (IEDM), 16.3.1–16.3.4.
Wang, J., Cao, L., Xie, J., Beam, E., McCarthy, R., Youtsey, C., & Fay, P. (2017). High voltage vertical p-n diodes with ion-implanted edge termination and sputtered SiNx passivation on GaN substrates. IEEE International Electron Devices Meeting (IEDM), 9.6.1–9.6.4.
Wang, X., Hu, W., Chen, X., & Lu, W. (2012). The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs. IEEE Transactions on Electron Devices, 59(5), 1393-1401.
Zhang, Z., Li, B., Tang, X., Qian, Q., Hua, M., Huang, B., & Chen, K. J. (2016). Nitridation of GaN surface for power device application: A first-principles study. IEEE International Electron Devices Meeting (IEDM), 36.2.1–36.2.4.