Análise não linear de blocos de concreto sobre 4 estacas utilizando a relação constitutiva Concrete Damaged Plasticity
DOI:
https://doi.org/10.15628/holos.2025.15871Palavras-chave:
Blocos de Concreto sobre estaca, calibração, concreto armado, concrete damaged plasticityResumo
O CDP (Concrete Damaged Plasticity) é uma relação constitutiva utilizada para simulação numérica de elementos de concreto armado. A literatura técnica não apresenta discussões sobre o uso destas metodologias em blocos de concreto sobre estacas. Este estudo analisou o comportamento de modelos numéricos de blocos de concreto sobre 4 estacas com o CDP. Foi realizado uma parametrização das variáveis do CDP para calibração dos modelos e análise do comportamento estrutural. Considerando as metodologias de processamento, o modelo quasi-static apresentou menor esforço computacional, no entanto, recomenda-se que seu uso seja efetuado com uma malha refinada na ordem de 3% da menor dimensão do elemento volumétrico. Além disso, os valores dos parâmetros do CDP não foram coincidentes entre os solucionadores, necessitando realizar a calibração por meio de parametrizações para cada modo de processamento
Downloads
Referências
Aktas, M., & Sumer, Y. (2014). Nonlinear finite element analysis of damaged and strengthened reinforced concrete beams. Journal of Civil Engineering and Management, 20(2), 201–210. https://doi.org/10.3846/13923730.2013.801889
Alfarah, B., López-Almansa, F., & Oller, S. (2017). New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures. Engineering Structures, 132, 70–86. https://doi.org/10.1016/j.engstruct.2016.11.022
AMERICAN CONCRETE INSTITUTE. ACI 318-19: Building code requirements for structural concrete. (2019). An ACI Standard. ACI Committee 318.
Associação Brasileira de Normas Técnicas. (2014). NBR 6118 - Projeto de Estruturas de concreto - Procedimento. Associação Brasileira de Normas Técnicas, 238.
Blévot, J., & Frémy, R. (1967). Annales de l’Institut Technique du Batiment et des Travaux Publics.
Bloodworth, A. G., Cao, J., & Xu, M. (2012). Numerical Modeling of Shear Behavior of Reinforced Concrete Pile Caps. Journal of Structural Engineering, 138(6), 708–717. https://doi.org/10.1061/(asce)st.1943-541x.0000499
Buttignol, T. E. T., & Almeida, L. C. (2013). Concrete compressive characteristic strength analysis of pile caps with three piles. Revista IBRACON de Estruturas e Materiais, 6(1), 158–177. https://doi.org/10.1590/s1983-41952013000100009
Carreira, D. J., & Kuang-Han Chu. (1985). Stress-Strain Relatonship for Reinforced Concrete in Compression. ACI Structural Journal, November-December, 797–804.
CEB-FIP C. (1993). Model Code 1990 for Concrete Structures, Comit e Euro-International du Beton and Federation Internationale de la Precontrainte. In FIB bulletin (p. 105). London: Thomas Telford.
CEB-FIP C. (2012). Model Code 2010-Final draft: Volume 1: fib Federation internationale du beton;
Chan, T. K., & Poh, C. K. (2000). Behaviour of precast reinforced concrete pile caps. Construction and Building Materials.
COMITÉ EUROPÉEN DE NORMALISATION. (2004). Eurocode 2: Design of concrete structures – Part 1–1: General rules and rules for buildings; 1(2005).
Delalibera, R. G., Da Silva, W. A., & Giongo, J. S. (2014). Análise numérica de blocos sobre duas estacas com cálice embutido submetido à ação de força horizontal. Ciencia y Engenharia/ Science and Engineering Journal, 23(1), 83–91. https://doi.org/10.14393/19834071.2014.26852
Delalibera, R. G., & Giongo, J. S. (2008). Deformações nas diagonais comprimidas em blocos sobre duas estacas. Revista IBRACON de Estruturas e Materiais, 1(2), 121–157. https://doi.org/10.1590/s1983-41952008000200002
Delalibera, R. G., & Sousa, G. F. (2021). Numerical analyses of two-pile caps considering lateral friction between the piles and soil. Revista IBRACON de Estruturas e Materiais, 14(6), 1–19. https://doi.org/10.1590/s1983-41952021000600004
Earij, A., Alfano, G., Cashell, K., & Zhou, X. (2017). Nonlinear three–dimensional finite–element modelling of reinforced–concrete beams: Computational challenges and experimental validation. Engineering Failure Analysis, 82(March), 92–115. https://doi.org/10.1016/j.engfailanal.2017.08.025
Earls, C. J. (1999). Effects of material property stratification and residual stresses on single angle flexural ductility. Journal of Constructional Steel Research, 51(2), 147–175. https://doi.org/10.1016/S0143-974X(99)00024-3
Genikomsou, A. S., & Polak, M. A. (2015). Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS. Engineering Structures, 98, 38–48. https://doi.org/10.1016/j.engstruct.2015.04.016
Gonçalves, V. F., Delalibera, R. G., & de Oliveira Filho, M. A. (2022). Analysis of the pile-to-cap connection of pile caps on two steel piles – An experimental and numerical study. Engineering Structures, 252(July 2021). https://doi.org/10.1016/j.engstruct.2021.113629
Husain, M., Eisa, A. S., & Hegazy, M. M. (2019). Strengthening of reinforced concrete shear walls with openings using carbon fiber-reinforced polymers. International Journal of Advanced Structural Engineering, 11(2), 129–150. https://doi.org/10.1007/s40091-019-0216-6
IYER, P. K., & SAM, C. (1992). THREE-DIMENSIONAL ANALYSIS OF PILE CAPS. Compurers & Srrucrwes, 42(3), 395–411.
Luchesi, G. L., Randi, R. de P., Trautwein, L. M., & Almeida, L. C. de. (2022). Important aspects in experimental versus numerical comparative analysis in pile caps. Revista IBRACON de Estruturas e Materiais, 15(5), 1–16. https://doi.org/10.1590/s1983-41952022000500002
Meléndez, C., Miguel, P. F., & Pallarés, L. (2016). A simplified approach for the ultimate limit state analysis of three-dimensional reinforced concrete elements. Engineering Structures, 123, 330–340. https://doi.org/10.1016/j.engstruct.2016.05.039
Meléndez, C., Sagaseta, J., Miguel, P. F., & Rubio, L. P. (2019). Refined three-dimensional strut-and-tie model for analysis and design of four-pile caps. ACI Structural Journal, 116(4), 15–29. https://doi.org/10.14359/51714485
Milligan, G. J., Polak, M. A., & Zurell, C. (2020). Finite element analysis of punching shear behaviour of concrete slabs supported on rectangular columns. Engineering Structures, 224(October 2019), 111189. https://doi.org/10.1016/j.engstruct.2020.111189
Nana, W. S. A., Bui, T. T., Limam, A., & Abouri, S. (2017). Experimental and Numerical Modelling of Shear Behaviour of Full-scale RC Slabs Under Concentrated Loads. Structures, 10, 96–116. https://doi.org/10.1016/j.istruc.2017.02.004
Nguyen, T. N. H., Tan, K. H., & Kanda, T. (2019). Investigations on web-shear behavior of deep precast, prestressed concrete hollow core slabs. Engineering Structures, 183(January), 579–593. https://doi.org/10.1016/j.engstruct.2018.12.052
Nogueira, T. B., & Souza, R. A. de. (2006). Análise, dimensionamento e verificaçao de elementos espaciais em concreto armado utilizando o método dos elementos finitos e o método das bielas. Revista Internacional de Metodos Numericos Para Calculo y Diseno En Ingenieria, 22(1), 31–44.
Oliveira, D. S., Barros, R., & Giongo, J. S. (2014). Blocos de concreto armado sobre seis estacas: simulação numérica e dimensionamento pelo método de bielas e tirantes. Revista IBRACON de Estruturas e Materiais, 7(1), 1–23. https://doi.org/10.1590/s1983-41952014000100002
Panahi, H., & Genikomsou, A. S. (2022). Comparative evaluation of concrete constitutive models in non-linear finite element simulations of slabs with different flexural reinforcement ratios. Engineering Structures, 252(August 2021), 113617. https://doi.org/10.1016/j.engstruct.2021.113617
Pelletier, K., & Léger, P. (2017). Nonlinear seismic modeling of reinforced concrete cores including torsion. Engineering Structures, 136, 380–392. https://doi.org/10.1016/j.engstruct.2017.01.042
Sam, C., & Iyer, P. K. (1995). Nonlinear finite element analysis of reinforced concrete four-pile caps. Computers and Structures, 57(4), 605–622. https://doi.org/10.1016/0045-7949(95)00068-R
Silva, L. M. E., Christoforo, A. L., & Carvalho, R. C. (2021). Calibration of concrete damaged plasticity model parameters for shear walls. Revista Materia, 26(1). https://doi.org/10.1590/s1517-707620210001.1244
Souza, R. A., Kuchma, D. A., Park, J., & Bittencourt, T. N. (2007). Nonlinear Finite Element Analysis of Four-Pile Caps Supporting Columns Subjected To Generic Loading. Computers and Concrete, 4(5), 363–367.
Suzuki, K. ., Otsuki, K. ., & Tsubata, T. (1998). Influence of Bar Arrangement on Ultimate Strength of Four-Pile Caps. Transactions of the Japan Concrete Institute, 20, 195–202.
Systèmes, D. (2013). ABAQUS ANALYSYS USER´s MANUAL.
Szczecina, M., & Winnicki, A. (2016). Selected Aspects of Computer Modeling of Reinforced Concrete Structures. Archives of Civil Engineering, 62(1), 51–64. https://doi.org/10.1515/ace-2015-0051
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

































