COVID-19, COMPLICAÇÕES TROMBÓTICAS E FÁRMACOS ANTICOAGULANTES: UMA VISÃO GERAL E PERSPECTIVAS FARMACOLÓGICAS

Autores

  • LUCAS ALIGHIERI NEVES COSTA BATISTA Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL https://orcid.org/0000-0001-5587-4184
  • Hugo Alexandre Oliveira Rocha Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL https://orcid.org/0000-0003-2252-1221

DOI:

https://doi.org/10.15628/holos.2021.11808

Palavras-chave:

Corona vírus, SARS-CoV-2, trombose venosa, microangiopatia, heparina

Resumo

Uma nova doença infeciosa causada pelo novo coronavírus, a COVID-19, surgiu na China no final de 2019 e já em março de 2020 foi classificada como uma pandemia. O principal sítio de infecção do novo coronavírus, o SARS-CoV-2 sãos os pulmões, nos quais causa uma síndrome respiratória aguda (ARDS) que compromete a função pulmonar e pode causar a morte. Diversos estudos demonstram correlação entre alterações em parâmetros da coagulação e maior taxa de mortalidade na COVID-19. A infecção pelo SARS-CoV-2 favorece a formação de trombos em várias regiões do corpo, os quais contribuem para o deterioramento das funções vitais do paciente. Duas prováveis causas da hipercoagubilidade são: a hiper inflamação causada pela infecção viral, a qual induz a liberação de moléculas pro-trombóticas, e o tropismo viral por células endoteliais, o que compromete a integridade endotelial e a homeostasia primária. O tratamento profilático com anticoagulantes melhora o prognostico e mortalidade. A heparina de baixo peso molecular é o principal anticoagulante utilizado no tratamento antitrombótico profilático da COVID-19. Entretanto vale salientar que existem problemas quanto ao uso da heparina como: limite de disponibilidade e riscos de causar sangramentos e/ou trombocitopenia induzida por heparina. Esses problemas reforçam a necessidade de substitutos para a heparina.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Biografia do Autor

LUCAS ALIGHIERI NEVES COSTA BATISTA, Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL

Biomédico, mestre em Bioquímica, doutorando em Ciências da Saúde- UFRN

Hugo Alexandre Oliveira Rocha, Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL

Formado em Farmácia pela UFRN, mestre em Biologia Molecular e doutor em Ciências, ambos obtidos na UNIFESP. Atua na área de produtos naturais, principalmente na área de extração, purificação, caracterização estrutural e aplicações farmacológicas de polissacarídeos

Referências

Al-Horani, R. A. (2020). Potential Therapeutic Roles for Direct Factor Xa Inhibitors in Coronavirus Infections. American Journal of Cardiovascular Drugs, 20(6), 525–533. https://doi.org/10.1007/s40256-020-00438-6

Al-Samkari, H., Karp Leaf, R. S., Dzik, W. H., Carlson, J. C., Fogerty, A. E., Waheed, A., … Rosovsky, R. P. (2020). COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV2 Infection. Blood. https://doi.org/10.1182/blood.2020006520

Alban, S. (2008). Pharmacological Strategies for Inhibition of Thrombin Activity. Current Pharmaceutical Design, 14(12), 1152–1175. https://doi.org/10.2174/138161208784246135

Arnold, D. M., Patriquin, C. J., & Nazy, I. (2017). Thrombotic microangiopathies: a general approach to diagnosis and management. Canadian Medical Association Journal, 189(4), E153–E159. https://doi.org/10.1503/cmaj.160142

Artifoni, M., Danic, G., Gautier, G., Gicquel, P., Boutoille, D., Raffi, F., … Lecomte, R. (2020). Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. Journal of Thrombosis and Thrombolysis, 50(1), 211–216. https://doi.org/10.1007/s11239-020-02146-z

Bansal, A., Singh, A. D., Jain, V., Aggarwal, M., Gupta, S., Padappayil, R. P., … Mian, A. (2020). A Systematic Review and Meta-analysis of D-Dimer Levels in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19). MedRxiv, 2020.06.24.20139600. https://doi.org/10.1101/2020.06.24.20139600

Bautista-Vargas, M., Bonilla-Abadía, F., & Cañas, C. A. (2020). Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. Journal of Thrombosis and Thrombolysis, (0123456789). https://doi.org/10.1007/s11239-020-02172-x

Becker, R. C. (2020). COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis, 50(1), 54–67. https://doi.org/10.1007/s11239-020-02134-3

Björck, F., Renlund, H., Lip, G. Y. H., Wester, P., Svensson, P. J., & Själander, A. (2016). Outcomes in a warfarin-treated population with atrial fibrillation. JAMA Cardiology, 1(2), 172–180. https://doi.org/10.1001/jamacardio.2016.0199

Blann, A. D., & Lip, G. Y. H. (2006). Clinical review Venous thromboembolism. British Medical Journal, 332, 215–219. https://doi.org/doi: http://dx.doi.org/10.1136/bmj.332.7535.215

Cai, Z., Greene, M. I., Zhu, Z., & Zhang, H. (2020). Structural Features and PF4 Functions that Occur in Heparin-Induced Thrombocytopenia (HIT) Complicated by COVID-19. Antibodies, 9(4), 52. https://doi.org/10.3390/antib9040052

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., … Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620–2629. https://doi.org/10.1172/JCI137244

Chen, L., Xu, R., Yu, H., Chang, Q., & Zhong, J. (2015). The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. International Journal of Hypertension, 2015, 1–6. https://doi.org/10.1155/2015/896861

Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. Journal of Medical Virology, (March), 726–730. https://doi.org/10.1002/jmv.25785

Christersson, C., Wallentin, L., Andersson, U., Alexander, J. H., Alings, M., De Caterina, R., … Siegbahn, A. (2019). Effect of apixaban compared with warfarin on coagulation markers in atrial fibrillation. Heart, 105(3), 235–242. https://doi.org/10.1136/heartjnl-2018-313351

Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., Painter, C. D., … Esko, J. D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 183(4), 1043-1057.e15. https://doi.org/10.1016/j.cell.2020.09.033

Coleman, C. I., Bunz, T. J., & Turpie, A. G. G. (2017). Effectiveness and safety of rivaroxaban versus warfarin for treatment and prevention of recurrence of venous thromboembolism. Thrombosis and Haemostasis, 117(10), 1841–1847. https://doi.org/10.1160/TH17-03-0210

Costantino, G., Ceriani, E., Rusconi, A. M., Podda, G. M., Montano, N., Duca, P., … Casazza, G. (2012). Bleeding Risk during Treatment of Acute Thrombotic Events with Subcutaneous LMWH Compared to Intravenous Unfractionated Heparin; A Systematic Review. PLoS ONE, 7(9), 1–10. https://doi.org/10.1371/journal.pone.0044553

Cui, S., Chen, S., Li, X., Liu, S., & Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, (April), 1421–1424. https://doi.org/10.1111/jth.14830

Daviet, F., Guervilly, C., Baldesi, O., Bernard-Guervilly, F., Pilarczyk, E., Genin, A., … Camoin-Jau, L. (2020). Heparin-Induced Thrombocytopenia in Severe COVID-19. Circulation, 142(19), 1875–1877. https://doi.org/10.1161/CIRCULATIONAHA.120.049015

Demelo-Rodríguez, P., Cervilla-Muñoz, E., Ordieres-Ortega, L., Parra-Virto, A., Toledano-Macías, M., Toledo-Samaniego, N., … Galeano-Valle, F. (2020). Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thrombosis Research, 192, 23–26. https://doi.org/10.1016/j.thromres.2020.05.018

Devreese, K. M. J., Linskens, E. A., Benoit, D., & Peperstraete, H. (2020). Antiphospholipid antibodies in patients with COVID?19: A relevant observation? Journal of Thrombosis and Haemostasis, 18(9), 2191–2201. https://doi.org/10.1111/jth.14994

Dolhnikoff, M., Duarte-Neto, A. N., de Almeida Monteiro, R. A., da Silva, L. F. F., de Oliveira, E. P., Saldiva, P. H. N., … Negri, E. M. (2020). Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. Journal of Thrombosis and Haemostasis, 18(6), 1517–1519. https://doi.org/10.1111/jth.14844

Dragonetti, D., Guarini, G., & Pizzuti, M. (2020). Detection of anti-heparin-PF4 complex antibodies in COVID-19 patients on heparin therapy. Blood Transfusion, 18(4), 328. https://doi.org/10.2450/2020.0164-20

Esmon, C. T. (2005). The interactions between inflammation and coagulation. British Journal of Haematology, 131(4), 417–430. https://doi.org/10.1111/j.1365-2141.2005.05753.x

Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., … Gallagher, P. E. (2005). Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation, 111(20), 2605–2610. https://doi.org/10.1161/CIRCULATIONAHA.104.510461

Focosi, D., Tuccori, M., & Maggi, F. (2020). ACE Inhibitors and AT1R Blockers for COVID-2019: Friends or Foes ? Preprints, (April). https://doi.org/10.20944/PREPRINTS202004.0151.V2

Franco, R. F. (2001). Fisiologia da coagulação. Medicina, 3(34), 229–237.

Gando, S., Levi, M., & Toh, C. H. (2016). Disseminated intravascular coagulation. Nature Reviews Disease Primers, 2(Dic), 1–16. https://doi.org/10.1038/nrdp.2016.37

Garg, A., Goyal, S., & Patel, P. (2020). A Case of COVID-19 Infection With Delayed Thromboembolic Complication on Warfarin. Cureus. https://doi.org/10.7759/cureus.8847

Gavriilaki, E., Anyfanti, P., Gavriilaki, M., Lazaridis, A., Douma, S., & Gkaliagkousi, E. (2020). Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Current Hypertension Reports, 22(9). https://doi.org/10.1007/s11906-020-01078-6

Greinacher, A., Janssens, U., Berg, G., Bo?ck, M., Kwasny, H., Kemkes-Matthes, B., … Luz, M. (1999). Lepirudin (Recombinant Hirudin) for Parenteral Anticoagulation in Patients With Heparin-Induced Thrombocytopenia. Circulation, 100(6), 587–593. https://doi.org/10.1161/01.CIR.100.6.587

Guarner, J. (2020). Three Emerging Coronaviruses in Two Decades. American Journal of Clinical Pathology, 153(4), 420–421. https://doi.org/10.1093/ajcp/aqaa029

Harzallah, I., Debliquis, A., & Drénou, B. (2020). Lupus anticoagulant is frequent in patients with Covid?19. Journal of Thrombosis and Haemostasis, 18(8), 2064–2065. https://doi.org/10.1111/jth.14867

Hoffbrand, A. V, & Moss, P. A. H. (2017). Fundamentos em Hematologia de Hoffbrand (7a edição). Porto Alegre: Artmed Editora.

Hottz, E. D., Azevedo-Quintanilha, I. G., Palhinha, L., Teixeira, L., Barreto, E. A., Pão, C. R. R., … Bozza, P. T. (2020). Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood, 136(11), 29–35. https://doi.org/10.1182/blood.2020007252

Iba, T., Levy, J. H., Warkentin, T. E., Thachil, J., van der Poll, T., & Levi, M. (2019). Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. Journal of Thrombosis and Haemostasis, 17(11), 1989–1994. https://doi.org/10.1111/jth.14578

Ikezoe, T. (2015). Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. Journal of Intensive Care, 3(1), 1–8. https://doi.org/10.1186/s40560-014-0050-7

Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., … Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112–116. https://doi.org/10.1038/nature03712

Inciardi, R. M., Adamo, M., Lupi, L., Cani, D. S., Di Pasquale, M., Tomasoni, D., … Metra, M. (2020). Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. European Heart Journal, 41(19), 1821–1829. https://doi.org/10.1093/eurheartj/ehaa388

Ito, T., Thachil, J., Asakura, H., Levy, J. H., & Iba, T. (2019). Thrombomodulin in disseminated intravascular coagulation and other critical conditions - A multi-faceted anticoagulant protein with therapeutic potential. Critical Care, 23(1), 1–11. https://doi.org/10.1186/s13054-019-2552-0

Iturbe-Hernandez, T., García de Guadiana Romualdo, L., Gil Ortega, I., Martínez Francés, A., Meca Birlanga, O., & Cerezo-Manchado, J. J. (2020). Dabigatran, the oral anticoagulant of choice at discharge in patients with non-valvular atrial fibrillation and COVID-19 infection: the ANIBAL* protocol. Drugs in Context, 9, 1–12. https://doi.org/10.7573/dic.2020-8-3

Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. Journal of Virology, 93(6). https://doi.org/10.1128/JVI.01815-18

Johnson, E. D., Schell, J. C., & Rodgers, G. M. (2019). The D?dimer assay. American Journal of Hematology, ajh.25482. https://doi.org/10.1002/ajh.25482

Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: the interplay between inflammation and coagulation. The Lancet Respiratory Medicine, 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2

Jun, M., Lix, L. M., Durand, M., Dahl, M., Paterson, J. M., Dormuth, C. R., … Hemmelgarn, B. R. (2017). Comparative safety of direct oral anticoagulants and warfarin in venous thromboembolism: Multicentre, population based, observational study. The BMJ, 359. https://doi.org/10.1136/bmj.j4323

Katopodis, P., Anikin, V., Randeva, H., Spandidos, D., Chatha, K., Kyrou, I., & Karteris, E. (2020). Pan?cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS?CoV?2 infection leading to COVID-19. International Journal of Oncology, 57(2), 533–539. https://doi.org/10.3892/ijo.2020.5071

Kearon, C., Akl, E. A., Comerota, A. J., Prandoni, P., Bounameaux, H., Goldhaber, S. Z., … Kahn, S. R. (2012). Antithrombotic Therapy for VTE Disease. Chest, 141(2), e419S-e496S. https://doi.org/10.1378/chest.11-2301

Keshari, R. S., Silasi, R., Popescu, N. I., Georgescu, C., Chaaban, H., Lupu, C., … Lupu, F. (2020). Fondaparinux pentasaccharide reduces sepsis coagulopathy and promotes survival in the baboon model of Escherichia coli sepsis. Journal of Thrombosis and Haemostasis, 18(1), 180–190. https://doi.org/10.1111/jth.14642

Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., … Endeman, H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191(5), 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., … Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11(8), 875–879. https://doi.org/10.1038/nm1267

Kumar, P., Mediwake, R., & Rhead, C. (2020). A matter of time: duration and choice of venous thromboprophylaxis in patients diagnosed with COVID-19. British Journal of Hospital Medicine, 81(5), 1–2. https://doi.org/10.12968/hmed.2020.0210

Lanza, K., Perez, L. G., Costa, L. B., Cordeiro, T. M., Palmeira, V. A., Ribeiro, V. T., & Simões E Silva, A. C. (2020). Covid-19: the renin-angiotensin system imbalance hypothesis. Clinical Science, 134(11), 1259–1264. https://doi.org/10.1042/CS20200492

Lee, C. J., & Ansell, J. E. (2011). Direct thrombin inhibitors. British Journal of Clinical Pharmacology, 72(4), 581–592. https://doi.org/10.1111/j.1365-2125.2011.03916.x

Levi, M., & Thachil, J. (2020). Coronavirus Disease 2019 Coagulopathy: Disseminated Intravascular Coagulation and Thrombotic Microangiopathy—Either, Neither, or Both. Seminars in Thrombosis and Hemostasis, 1(212). https://doi.org/10.1055/s-0040-1712156

Levy, J. H., Szlam, F., Wolberg, A. S., & Winkler, A. (2014). Clinical Use of the Activated Partial Thromboplastin Time and Prothrombin Time for Screening. Clinics in Laboratory Medicine, 34(3), 453–477. https://doi.org/10.1016/j.cll.2014.06.005

Li, S. ren, Tang, Z. jian, Li, Z. han, & Liu, X. (2020). Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. European Journal of Clinical Microbiology and Infectious Diseases, 1021–1026. https://doi.org/10.1007/s10096-020-03883-y

Lillicrap, D. (2020). Disseminated intravascular coagulation in patients with 2019?nCoV pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 786–787. https://doi.org/10.1111/jth.14781

Lindahl, U., Couchman, J., Kimata, K., & Esko, J. D. (2015). Proteoglycans and Sulfated Glycosaminoglycans (3rd ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

Lip, G. Y. H., Lowe, G. D. O., Rumley, A., & Dunn, F. G. (1995). Increased markers of thrombogenesis in chronic atrial fibrillation: Effects of warfarin treatment. Heart, 73(6), 527–533. https://doi.org/10.1136/hrt.73.6.527

Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, (March), 814–818. https://doi.org/10.1002/jmv.25801

Maldonado, E., Tao, D., & Mackey, K. (2020). Antithrombotic Therapies in COVID-19 Disease: a Systematic Review. Journal of General Internal Medicine, (Cdc). https://doi.org/10.1007/s11606-020-05906-y

Mammen, E. F. (1998). Antithrombin: Its physiological importance and role in DIC. Seminars in Thrombosis and Hemostasis, 24(1), 19–25. https://doi.org/10.1055/s-2007-995819

Martel, N., Lee, J., & Wells, P. S. (2005). Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood, 106(8), 2710–2715. https://doi.org/10.1182/blood-2005-04-1546

McCarthy, C. P., Vaduganathan, M., Solomon, E., Sakhuja, R., Piazza, G., Bhatt, D. L., … Patel, N. K. (2020). Running thin: implications of a heparin shortage. The Lancet, 395(10223), 534–536. https://doi.org/10.1016/S0140-6736(19)33135-6

McGlynn, F., McGrath, J., Varghese, C., Ryan, B., McHugh, J., Fahy, A., & Enright, H. (2020). Argatroban for therapeutic anticoagulation for heparin resistance associated with Covid-19 infection. Journal of Thrombosis and Thrombolysis. https://doi.org/10.1007/s11239-020-02251-z

Michel, N., Allespach, I., Venzke, S., Fackler, O. T., & Keppler, O. T. (2005). The nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Current Biology, 15(8), 714–723. https://doi.org/10.1016/j.cub.2005.02.058

Middeldorp, S., Coppens, M., Haaps, T. F., Foppen, M., Vlaar, A. P., Müller, M. C. A., … Es, N. (2020). Incidence of venous thromboembolism in hospitalized patients with COVID?19. Journal of Thrombosis and Haemostasis, 18(8), 1995–2002. https://doi.org/10.1111/jth.14888

Miesbach, W., & Makris, M. (2020). COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clinical and Applied Thrombosis/Hemostasis, 26. https://doi.org/10.1177/1076029620938149

Monteleone, G., Sarzi-Puttini, P. C., & Ardizzone, S. (2020). Preventing COVID-19-induced pneumonia with anticytokine therapy. The Lancet Rheumatology, 2(5), e255–e256. https://doi.org/10.1016/S2665-9913(20)30092-8

Nader, H. B., Chavante, S. F., Dos-Santos, E. A., Oliveira, F. W., De-Paiva, J. F., Jerônimo, S. M. B., … Dietrich, C. P. (1999). Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Brazilian Journal of Medical and Biological Research, 32(5), 529–538. https://doi.org/10.1590/S0100-879X1999000500005

Nader, H., Lopes, C., Rocha, H., Santos, E., & Dietrich, C. (2004). Heparins and Heparinoids: Occurrence, Structure and Mechanism of Antithrombotic and Hemorrhagic Activities. Current Pharmaceutical Design, 10(9), 951–966. https://doi.org/10.2174/1381612043452758

Nagashima, S., Mendes, M. C., Camargo Martins, A. P., Borges, N. H., Godoy, T. M., Miggiolaro, A. F. R. dos S., … de Noronha, L. (2020). Endothelial Dysfunction and Thrombosis in Patients With COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, (October), 1–4. https://doi.org/10.1161/atvbaha.120.314860

Nam, D., Nunley, R. M., Johnson, S. R., Keeney, J. A., Clohisy, J. C., & Barrack, R. L. (2016). The Effectiveness of a Risk Stratification Protocol for Thromboembolism Prophylaxis After Hip and Knee Arthroplasty. Journal of Arthroplasty, 31(6), 1299–1306. https://doi.org/10.1016/j.arth.2015.12.007

Nasiripour, S., Saif, M., Farasatinasab, M., Emami, S., Amouzegar, A., Basi, A., & Mokhtari, M. (2019). Dabigatran as a Treatment Option for Heparin?Induced Thrombocytopenia. The Journal of Clinical Pharmacology, 59(1), 107–111. https://doi.org/10.1002/jcph.1300

Neumann, I., Rada, G., Claro, J. C., Carrasco-Labra, A., Thorlund, K., Akl, E. A., … Guyatt, G. H. (2012). Oral direct factor Xa inhibitors versus low-molecular-weight heparin to prevent venous thromboembolism in patients undergoing total hip or knee replacement a systematic review and meta-analysis. Annals of Internal Medicine, 156(10), 710–719. https://doi.org/10.7326/0003-4819-156-10-201205150-00421

Olson, S. T., & Bjork, I. (1994). Regulation of thrombin activity by antithrombin and heparin. Seminars in Thrombosis and Hemostasis, 20(4), 373–409. https://doi.org/10.1055/s-2007-1001928

Onder, G., Rezza, G., & Brusaferro, S. (2020). Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. https://doi.org/10.1001/jama.2020.4683

Papageorgiou, C., Jourdi, G., Adjambri, E., Walborn, A., Patel, P., Fareed, J., … Gerotziafas, G. T. (2018). Disseminated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies. Clinical and Applied Thrombosis/Hemostasis, 24(9_suppl), 8S-28S. https://doi.org/10.1177/1076029618806424

Patell, R., Khan, A. M., Bogue, T., Merrill, M., Koshy, A., Bindal, P., … Zwicker, J. I. (2020). Heparin induced thrombocytopenia antibodies in Covid?19. American Journal of Hematology, 95(10). https://doi.org/10.1002/ajh.25935

Patriarcheas, V., Pikoulas, A., Kostis, M., Charpidou, A., & Dimakakos, E. (2020). Heparin-induced Thrombocytopenia: Pathophysiology, Diagnosis and Management. Cureus, 12(3). https://doi.org/10.7759/cureus.7385

Perzborn, E., Roehrig, S., Straub, A., Kubitza, D., & Misselwitz, F. (2011). The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nature Reviews Drug Discovery, 10(1), 61–75. https://doi.org/10.1038/nrd3185

Petros, S. (2008). Lepirudin in the management of patients with heparin-induced thrombocytopenia. Biologics: Targets and Therapy, 2(3), 481–490. https://doi.org/10.2147/btt.s3415

Phillippe, H. M. (2017). Overview of venous thromboembolism. The American Journal of Managed Care, 23(20), S376–S382. https://doi.org/10.4103/0019-5049.144643.FIGURE

Prandoni, P., Cattelan, A. M., Carrozzi, L., Leone, L., Filippi, L., De Gaudenzi, E., … Pesavento, R. (2020). The hazard of fondaparinux in non-critically ill patients with COVID-19: Retrospective controlled study versus enoxaparin. Thrombosis Research, 196, 395–397. https://doi.org/10.1016/j.thromres.2020.09.024

Riker, R. R., May, T. L., Fraser, G. L., Gagnon, D. J., Bandara, M., Zemrak, W. R., & Seder, D. B. (2020). Heparin?induced thrombocytopenia with thrombosis in COVID?19 adult respiratory distress syndrome. Research and Practice in Thrombosis and Haemostasis, 4(5), 936–941. https://doi.org/10.1002/rth2.12390

Romanelli, R. J., Nolting, L., Dolginsky, M., Kym, E., & Orrico, K. B. (2016). Dabigatran Versus Warfarin for Atrial Fibrillation in Real-World Clinical Practice: A Systematic Review and Meta-Analysis. Circulation: Cardiovascular Quality and Outcomes, 9(2), 126–134. https://doi.org/10.1161/CIRCOUTCOMES.115.002369

Russo, V., Cardillo, G., Viggiano, G. V., Mangiacapra, S., Cavalli, A., Fontanella, A., … Di Micco, P. (2020). Fondaparinux Use in Patients With COVID-19: A Preliminary Multicenter Real-World Experience. Journal of Cardiovascular Pharmacology, 76(4), 369–371. https://doi.org/10.1097/FJC.0000000000000893

Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (actemra). Human Vaccines and Immunotherapeutics, 13(9), 1972–1988. https://doi.org/10.1080/21645515.2017.1316909

Shields, L. B. E., Fowler, P., Siemens, D. M., Lorenz, D. J., Wilson, K. C., Hester, S. T., & Honaker, J. T. (2019). Standardized warfarin monitoring decreases adverse drug reactions. BMC Family Practice, 20(1), 1–7. https://doi.org/10.1186/s12875-019-1041-5

Sikara, M. P., Grika, E. P., & Vlachoyiannopoulos, P. P. (2011). Pathogenic Mechanisms of Thrombosis in Antiphospholipid Syndrome (APS). In Thrombophilia. https://doi.org/10.5772/25522

Song, J.-C., Wang, G., Zhang, W., Zhang, Y., Li, W.-Q., Zhou, Z., … Chinese Society on Thrombosis and Haemostasis. (2020). Chinese expert consensus on diagnosis and treatment of subacute combined degeneration. Chinese Journal of Neurology, 53(4), 269–273. https://doi.org/10.3760/cma.j.cn113694-20191101-00677

Song, W.-C., & FitzGerald, G. A. (2020). COVID-19, microangiopathy, hemostatic activation, and complement. Journal of Clinical Investigation. https://doi.org/10.1172/JCI140183

Sun, Z., Lan, X., Li, S., Zhao, H., Tang, Z., & Xi, Y. (2017). Comparisons of argatroban to lepirudin and bivalirudin in the treatment of heparin-induced thrombocytopenia: a systematic review and meta-analysis. International Journal of Hematology, 106(4), 476–483. https://doi.org/10.1007/s12185-017-2271-8

Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis, (March), 1094–1099. https://doi.org/10.1111/jth.14817

Tang, N., Li, D., Wang, X., & Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 844–847. https://doi.org/10.1111/jth.14768

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8

Tulinsky, A. (1996). Molecular interactions of thrombin. Seminars in Thrombosis and Hemostasis, 22(2), 117–124. https://doi.org/10.1055/s-2007-998998

Turshudzhyan, A. (2020). Anticoagulation Options for Coronavirus Disease 2019 (COVID-19)-Induced Coagulopathy. Cureus, 2019(5). https://doi.org/10.7759/cureus.8150

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., … Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5

Viggiano, G. V., Cardillo, G., Russo, V., Mangiacapra, S., Cavalli, A., Pesci, C., … Micco, P. Di. (2020). FONDENOXAVID: A Retrospective Analysis on Utility of Thromboprophylaxis with Fondaparinux and Enoxaparin in Patients with COVID19 Infection in Italy. (May). https://doi.org/10.20944/PREPRINTS202005.0309.V1

Vilanova, E., Tovar, A. M. F., & Mourão, P. A. S. (2019). Imminent risk of a global shortage of heparin caused by the African Swine Fever afflicting the Chinese pig herd. Journal of Thrombosis and Haemostasis, 17(2), 254–256. https://doi.org/10.1111/jth.14372

Wada, H., Thachil, J., Di Nisio, M., Mathew, P., Kurosawa, S., Gando, S., … Toh, C. (2013). Guidance for diagnosis and treatment of disseminated intravascular coagulation from harmonization of the recommendations from three guidelines. Journal of Thrombosis and Haemostasis, 11(4), 761–767. https://doi.org/10.1111/jth.12155

Wang, K., Gheblawi, M., & Oudit, G. Y. (2020). Angiotensin Converting Enzyme 2: A Double-Edged Sword. Circulation, 1–8. https://doi.org/10.1161/circulationaha.120.047049

Warkentin, T. E. (2010). Fondaparinux: Does it cause HIT? can it treat HIT? Expert Review of Hematology, 3(5), 567–581. https://doi.org/10.1586/ehm.10.54

Warkentin, T., Greinacher, A., & Koster, A. (2008). Bivalirudin. Thrombosis and Haemostasis, 99(11), 830–839. https://doi.org/10.1160/TH07-10-0644

White, D., MacDonald, S., Bull, T., Hayman, M., de Monteverde-Robb, R., Sapsford, D., … Thomas, W. (2020). Heparin resistance in COVID-19 patients in the intensive care unit. Journal of Thrombosis and Thrombolysis, 50(2), 287–291. https://doi.org/10.1007/s11239-020-02145-0

Whitlon, D. S., Sadowski, J. A., & Suttie, J. W. (1978). Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry, 17(8), 1371–1377. https://doi.org/10.1021/bi00601a003

World Health Organization. (2020a). Coronavirus disease 2019 Situation Report 148 16th June 2020. World Health Organization, 2019(June). https://doi.org/10.30895/2312-7821-2020-8-1-3-8

World Health Organization. (2020b). Coronavirus disease 2019 Situation Report 51 11th March 2020. World Health Organization, 2019(March), 2633. https://doi.org/10.1001/jama.2020.2633

World Health Organization. (2020c). Novel Coronavirus (2019-nCoV) Situation Report - 1. WHO Bulletin, (JANUARY), 1–7.

World Health Organization. (2020d). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). The WHO-China Joint Mission on Coronavirus Disease 2019, 1(February), 40.

Xiong, M., Liang, X., & Wei, Y. D. (2020). Changes in Blood Coagulation in Patients with Severe Coronavirus Disease 2019 (COVID-19): a Meta-Analysis. British Journal of Haematology, 2019, 2019–2021. https://doi.org/10.1111/bjh.16725

Xu, Xiaoling, Han, M., Li, T., Sun, W., Wang, D., Fu, B., … Wei, H. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10970–10975. https://doi.org/10.1073/pnas.2005615117

Xu, Xintian, Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., … Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63(3), 457–460. https://doi.org/10.1007/s11427-020-1637-5

Yang, M. (2020). Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3527420

Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology, 2019(37). https://doi.org/10.1007/s00330-020-06801-0

Zhang, A., Leng, Y., Zhang, Y., Wu, K., Ji, Y., Lei, S., & Xia, Z. (2020). Meta-Analysis of coagulation parameters associated with disease severity and poor prognosis of COVID-19. International Journal of Infectious Diseases, 112490. https://doi.org/10.1016/j.ijid.2020.09.021

Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9

Zhang, Yan, Cao, W., Jiang, W., Xiao, M., Li, Y., Tang, N., … Zhu, T. (2020). Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. Journal of Thrombosis and Thrombolysis, (0123456789). https://doi.org/10.1007/s11239-020-02182-9

Zhang, Yan, Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., … Zhang, S. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. New England Journal of Medicine, 382(17), e38. https://doi.org/10.1056/NEJMc2007575

Zhang, Yiran, Zhang, M., Tan, L., Pan, N., & Zhang, L. (2019). Chapter Three - The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. In L. B. T.-P. in M. B. and T. S. Zhang (Ed.), Glycans and Glycosaminoglycans as Clinical Biomarkers and Therapeutics - Part B (Vol. 163, pp. 41–53). https://doi.org/https://doi.org/10.1016/bs.pmbts.2019.02.004

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

Downloads

Publicado

06/08/2021

Como Citar

BATISTA, L. A. N. C., & Rocha, H. A. O. (2021). COVID-19, COMPLICAÇÕES TROMBÓTICAS E FÁRMACOS ANTICOAGULANTES: UMA VISÃO GERAL E PERSPECTIVAS FARMACOLÓGICAS. HOLOS, 4, 1–33. https://doi.org/10.15628/holos.2021.11808

Edição

Seção

Dossiê COVID-19 e o mundo em tempos de pandemia

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

1 2 3 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.