MODELAGEM MATEMÁTICA E PROPRIEDADES TERMODINÂMICAS DA SECAGEM CONVECTIVA DA POLPA DE TUCUMÃ (Astrocaryum aculeatum)

Autores

DOI:

https://doi.org/10.15628/holos.2022.13738

Palavras-chave:

Fruta amazônica, desidratação, difusividade

Resumo

A polpa de tucumã possui potencial para utilização industrial. Entretanto, o elevado conteúdo de umidade limita o seu uso. Assim, objetivou-se secar convectivamente a polpa de tucumã, a qual foi desidratada na espessura de 4 mm, nas temperaturas de 30, 40, 50 e 60 °C, com monitoramento da perda de umidade até equilíbrio higroscópico. Verificou-se que o aumento de temperatura reduziu os teores de umidade de equilíbrio. As taxas de secagem foram maiores em maiores temperaturas e teores de umidade. Os modelos de Dois termos (30 a 50 °C) e Midilli (60 °C) foram os mais adequados para descrever a secagem da amostra. Os coeficientes de difusão efetivos de umidade ficaram compreendidos entre 0,98 × 10-10 e 4,20 × 10-10 m2 s-1 e sua dependência com a temperatura foi descrita pela equação de Arrhenius, com energia de ativação de 42,15 kJ mol-1. As propriedades termodinâmicas evidenciaram um processo endergônica.

Downloads

Não há dados estatísticos.

Métricas

Carregando Métricas ...

Biografia do Autor

Claudianne Batista Pereira, IFAC

Graduanda em Tecnologia em Agroindústria pelo Instituto Federal de Educação, Ciência e Tecnologia do Acre/IFAC (Brasil)

Josileide Bezerra de Souza, IFAC

Graduanda em Tecnologia em Agroindústria pelo Instituto Federal de Educação, Ciência e Tecnologia do Acre/IFAC (Brasil)

Dyego da Costa Santos, IFRN

Doutor em Engenharia Agrícola pela Universidade Federal de Campina Grande/UFCG (Brasil). Professor do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/IFRN (Brasil)

Daniela Dantas de Farias Leite, INSA

Doutora em Engenharia Agrícola pela Universidade Federal de Campina Grande/UFCG (Brasil). Pesquisadora do Instituto Nacional do Seminárido/INSA (Brasil)

João Paulo de Lima Ferreira, INSA

Doutor em Engenharia Agrícola pela Universidade Federal de Campina Grande/UFCG (Brasil). Pesquisador do Instituto Nacional do Seminárido/INSA (Brasil)

Emanuel Neto Alves de Oliveira, IFRN

https://orcid.org/0000-0002-7000-8126

Referências

Aguiar, L.M., Bicas, J.L., Fuentes, E., Alarcón, M., Gonzalez, I.P., Pastore, G.M., Maróstica Junior, M.R. & Cazarin, C.B.B. (2021). Non nutrients and nutrients from Latin American fruits for the prevention of cardiovascular diseases. Food Research International, 139(1), 1-11.

Almeida, R.L.J., Santos, N.C., Alves, I.L. & André, A.M.M.C.N. (2021). Evaluation of thermodynamic properties and antioxidant activities of Achachairu (Garcinia humilis) peels under drying process. Flavour and Fragrance Journal, 36(2), 213-222.

Atiemoh, R.A., Zhou, C., Wahia, H., Mustapha, A.T., Rashid, M.T., Sampson, G., Owusu, A.A., Ma, H. & Zhou, R. (2020). Acoustically-aided osmo-dehydration pretreatments under pulsed vacuum dryer for apple slices: Drying kinetics, thermodynamics, and quality attributes. Journal of Food Science, 85(11), 3909-3919.

Ayetigbo, O., Latif, S., Abass, A. & Müller, J. (2021). Drying kinetics and effect of drying conditions onselected physicochemical properties of foam fromyellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127(1), 454-464.

Cabral, F.L., Bernardes, V.M., Passos, D.F., Oliveira, J.S., Doleski, P.H., Silveira, K.L., Hovart, M.C., Bremm, J.M., Barbisan, F., Azzolin, V.F., Teixeira, C.F., Andrade, C.M., Cruz, I.B.M., Ribeiro, E.E. & Leal, D.B.R. (2020). Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. Journal of Ethnopharmacology, 247(1), 1-12.

Cardozo, C.J.M., Gutiérrez, B.L.C., Velázquez, H.J.C. & Molina, D.A.R. (2021). Effect of pretreatment and temperature on the drying kinetics and physicochemical and techno-functional characteristics of pumpkin (Cucurbita maxima). Heliyon, 7(4), 1-8.

Cardoso, I.R.M., Zuniga, A.D.G., Fronza, P., Maciel, A.G. & Ferreira, J.S. (2017). Análise da cinética e modelagem matemática da secagem da polpa de buriti (Mauritia flexuosa L). Engevista, 19(5), 1188-1197.

Cruz, I.B.M., Barbisan, F. & Ribeiro, E.E. (2020). Bioactive compounds of tucuma (Astrocaryum aculeatum G. Mey.). In: Murthy, H. & Bapat, V. (eds). Bioactive compounds in underutilized fruits and nuts. Reference Series in Phytochemistry. Zurich, Springer, 1-14.

Cavalcanti-Mata, M.E.R.M., Duarte, M.E.M., Lira, V.V., Oliveira, R.F., Costa, N.L. & Oliveira, H.M.L. (2020). A new approach to the traditional drying models for the thin-layer drying kinetics of chickpeas. Journal of Food Process Engineering, 43(12), 1-11.

Felizardo, M.P., Merlo, G.R.F. & Maia, G.D. (2021). Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering, 205(1), 234-245.

Ferreira Junior, W.N., Resende, O., Pinheiro, G.K.I., Silva, L.C.M., Souza, D.G. & Sousa, K.A. (2021). Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 37-43.

Guex, C.G., Cassanego, G.B., Dornelles, R.C., Casoti, R., Engelmann, A.M., Somacal, S., Maciel, R.M., Duarte, T., Borges, W.S., Andrade, C.M., Emanuelli, T., Danesi, C.C., Ribeiro, E.E. & Bauermann, L.F. (2022). Tucumã (Astrocaryum aculeatum) extract: phytochemical characterization, acute and subacute oral toxicity studies in Wistar rats. Drug and Chemical Toxicology, 22(2), 810-821.

Jha, P., Meghwal, M., Prabhakar, P.K. & Singh, A. (2021). Exploring effects of different pretreatments on drying kinetics, moisture diffusion, physico-functional, and flow properties of banana flower powder. Journal of Food Processing and Preservation, 45(4), 1-15.

Jideani, V.A. & Mpotokwana, S.M. (2009). Modeling of water absorption of botswana bambara varieties using Peleg's equation. Journal of Food Engineering, 92(2), 182-188.

Leite, D.D.F., Queiroz, A.J.M., Figueiredo, R.M.F., Santos, F.S., Silva, S.N. & Santos, D.C. (2022). Mathematical modeling and thermodynamic properties in the drying of citron watermelon seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(1), 67-74.

Madamba, P.S., Driscoll, R.H. & Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97.

Matos, K.A.N., Lima, D.P., Barbosa, A.P.P., Mercadante, A.Z. & Chisté, R.C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272(1), 216-221.

Mbegbu, N.N., Nwajinka, C.O. & Amaefule, D.O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), 1-9.

Mishra, S., Sahu, J.K., Sanwal, N. & Sharma, N. (2021). Hot air convective drying of small cardamom (Elettaria cardamomum Maton): Evaluation of drying, color, and aroma kinetics. Journal of Food Process Engineering, 44(4), 1-11.

Mondaca, R.L., Bravo, L.Z., Ah-Hen, K. & Scalac, K. D. (2021). Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves. Journal of the Science of Food and Agriculture, 101(15), 6484-6495.

Morais, M.F., Santos, J.R.O., Santos, M.P., Santos, D.C., Costa, T.N. & Lima, J.B. (2019). Modeling and thermodynamic properties of ‘bacaba’ pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(9), 702-708.

Moura, H.V., Figueirêdo, R.M.F., Queiroz, A.J.M., Silva, E.T.V., Esmero, J.A.D. & Lisbôa, J.F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues. Journal of Food Process Engineering, 44(8), 1-11.

Nayak, P.K.; Chandrasekar, C.M.; Haque, A. & Kesavan, R.K. (2021). Influence of pre-treatments on the degradation kinetics of chlorophylls in morisa xak (Amaranthus caudatus) leaves after microwave drying. Journal of Food Process Engineering, 44(9), 1-13.

Niño, A.D., Sandoval, O.S., Vidaña, E.C.L., Munguía, A.L.C., Figueroa, I.P. & Valladares, O.G. (2021). Influence of process variables on the drying kinetics and color properties of pear slices (Pyrus communis). Color Research and Application, 46(5), 1128-1141.

Qi, Y., Yu, F., Wang, X., Wan, N., Yang, M., Wu, Z. & Li, Y. (2021). Drying of wolfberry fruit juice using low-intensity pulsed ultrasound. LWT - Food Science and Technology, 141(1), 1-8.

Resende, O., Oliveira, D.E.C., Costa, L.M. & Ferreira Júnior, W.N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109.

Santos, D.C., Queiroz, A.J.M., Figueirêdo, R.M.F. & Oliveira, E.N.A. (2013). Cinética de secagem de farinha de grãos residuais de urucum. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(2), 223-231.

Santos, M.F.G., Mamede, R.V.S., Rufino, M.S.M., Brito, E.S. & Alves, R.E. (2015a). Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants, 4(3), 591-602.

Santos, A.C.V., Fernandes, C.C., Lopes, L.M. & Sousa, A.H. (2015b). Use of plant oils from the southwestern Amazon for the control of maize weevil. Journal of Stored Products Research, 63(1), 67-70.

Santos, F.S., Figueirêdo, R.M.F., Queiroz, A.J.M. & Santos, D.C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 872-877.

Santos, D.C., Leite, D.D.F., Lisbôa, J.F., Ferreira, J.P.L., Santos, F.S., Lima, T.L.B., Figueiredo, R.M.F. & Costa, T.N. (2019a). Modelagem e propriedades termodinâmicas da secagem de fatias de acuri. Brazilian Journal of Food Technology, 22(1), 1-12.

Santos, D.C., Costa, T.N., Franco, F.B., Castro, R.C., Ferreira, J.P.L., Souza, M.A.S. & Santos, J.C.P. (2019b). Drying kinetics and thermodynamic properties of patawa pulp (Oenocarpus bataua Mart.). Brazilian Journal of Food Technology, 22(1), 1-11.

Silva, R.S., Santos, C.L., Mar, J.M., Kluczkovski, A.M., Figueiredo, J.A.; Borges, S.V.; Bakry, A.M., Sanches, E.A. & Campelo, P.H. (2018a). Physicochemical properties of tucumã (Astrocaryum aculeatum) powders with different carbohydrate biopolymers. LWT - Food Science and Technology, 94(1), 79-86.

Silva, M.B., Perez, V.H., Pereira, N.R., Silveira, T.C., Silva, N.R.F., Andrade, C.M. & Sampaio, R.M. (2018b). Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization. Journal of Food Science and Technology, 55(1), 1656-1666.

Tan, S., Miao, Y., Xiang, H., Tan, W. & Li, W. (2021). Effects of air-impingement jet drying on drying kinetics and quality retention of tomato slices. Food Science and Biotechnology, v.30, n.1, p.691-699.

Tarafdar, A., Jothi, N. & Kaur, B.P. (2021). Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa oleifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24(1), 1-8.

Taskin, O., Polat, A., Etemoglu, A.B. & Izli, N. (2021). Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective?dried banana slices. Journal of Thermal Analysis and Calorimetry, 147(1), 2343-2351.

Zheng, Q., Li, X., Liu, T., Zhang, Y., Liu, J., Zhang, H., Li, W. & Gao, X. (2021). Effects of air-impingement jet drying on drying kinetics, color, polyphenol compounds, and antioxidant activities of Boletus aereus slices. Journal of Food Science, 86(5), 2131-2144.

Zogzas, N.P., Mauroulis, Z.B. & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253.

Downloads

Publicado

2022-06-10

Como Citar

Batista Pereira, C., Bezerra de Souza, J., da Costa Santos, D., Dantas de Farias Leite, D., de Lima Ferreira, J. P., & Neto Alves de Oliveira, E. (2022). MODELAGEM MATEMÁTICA E PROPRIEDADES TERMODINÂMICAS DA SECAGEM CONVECTIVA DA POLPA DE TUCUMÃ (Astrocaryum aculeatum). HOLOS, 1, 1–18. https://doi.org/10.15628/holos.2022.13738

Edição

Seção

SECTA - IFRN