MODELAGEM MATEMÁTICA E PROPRIEDADES TERMODINÂMICAS DA SECAGEM CONVECTIVA DA POLPA DE TUCUMÃ (Astrocaryum aculeatum)
DOI:
https://doi.org/10.15628/holos.2022.13738Palavras-chave:
Fruta amazônica, desidratação, difusividadeResumo
A polpa de tucumã possui potencial para utilização industrial. Entretanto, o elevado conteúdo de umidade limita o seu uso. Assim, objetivou-se secar convectivamente a polpa de tucumã, a qual foi desidratada na espessura de 4 mm, nas temperaturas de 30, 40, 50 e 60 °C, com monitoramento da perda de umidade até equilíbrio higroscópico. Verificou-se que o aumento de temperatura reduziu os teores de umidade de equilíbrio. As taxas de secagem foram maiores em maiores temperaturas e teores de umidade. Os modelos de Dois termos (30 a 50 °C) e Midilli (60 °C) foram os mais adequados para descrever a secagem da amostra. Os coeficientes de difusão efetivos de umidade ficaram compreendidos entre 0,98 × 10-10 e 4,20 × 10-10 m2 s-1 e sua dependência com a temperatura foi descrita pela equação de Arrhenius, com energia de ativação de 42,15 kJ mol-1. As propriedades termodinâmicas evidenciaram um processo endergônica.
Downloads
Referências
Aguiar, L.M., Bicas, J.L., Fuentes, E., Alarcón, M., Gonzalez, I.P., Pastore, G.M., Maróstica Junior, M.R. & Cazarin, C.B.B. (2021). Non nutrients and nutrients from Latin American fruits for the prevention of cardiovascular diseases. Food Research International, 139(1), 1-11. DOI: https://doi.org/10.1016/j.foodres.2020.109844
Almeida, R.L.J., Santos, N.C., Alves, I.L. & André, A.M.M.C.N. (2021). Evaluation of thermodynamic properties and antioxidant activities of Achachairu (Garcinia humilis) peels under drying process. Flavour and Fragrance Journal, 36(2), 213-222. DOI: https://doi.org/10.1002/ffj.3635
Atiemoh, R.A., Zhou, C., Wahia, H., Mustapha, A.T., Rashid, M.T., Sampson, G., Owusu, A.A., Ma, H. & Zhou, R. (2020). Acoustically-aided osmo-dehydration pretreatments under pulsed vacuum dryer for apple slices: Drying kinetics, thermodynamics, and quality attributes. Journal of Food Science, 85(11), 3909-3919. DOI: https://doi.org/10.1111/1750-3841.15484
Ayetigbo, O., Latif, S., Abass, A. & Müller, J. (2021). Drying kinetics and effect of drying conditions onselected physicochemical properties of foam fromyellow-fleshed and white-fleshed cassava (Manihot esculenta) varieties. Food and Bioproducts Processing, 127(1), 454-464. DOI: https://doi.org/10.1016/j.fbp.2021.04.005
Cabral, F.L., Bernardes, V.M., Passos, D.F., Oliveira, J.S., Doleski, P.H., Silveira, K.L., Hovart, M.C., Bremm, J.M., Barbisan, F., Azzolin, V.F., Teixeira, C.F., Andrade, C.M., Cruz, I.B.M., Ribeiro, E.E. & Leal, D.B.R. (2020). Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. Journal of Ethnopharmacology, 247(1), 1-12. DOI: https://doi.org/10.1016/j.jep.2019.112274
Cardozo, C.J.M., Gutiérrez, B.L.C., Velázquez, H.J.C. & Molina, D.A.R. (2021). Effect of pretreatment and temperature on the drying kinetics and physicochemical and techno-functional characteristics of pumpkin (Cucurbita maxima). Heliyon, 7(4), 1-8. DOI: https://doi.org/10.1016/j.heliyon.2021.e06802
Cardoso, I.R.M., Zuniga, A.D.G., Fronza, P., Maciel, A.G. & Ferreira, J.S. (2017). Análise da cinética e modelagem matemática da secagem da polpa de buriti (Mauritia flexuosa L). Engevista, 19(5), 1188-1197. DOI: https://doi.org/10.22409/engevista.v19i5.946
Cruz, I.B.M., Barbisan, F. & Ribeiro, E.E. (2020). Bioactive compounds of tucuma (Astrocaryum aculeatum G. Mey.). In: Murthy, H. & Bapat, V. (eds). Bioactive compounds in underutilized fruits and nuts. Reference Series in Phytochemistry. Zurich, Springer, 1-14. DOI: https://doi.org/10.1007/978-3-030-06120-3_13-1
Cavalcanti-Mata, M.E.R.M., Duarte, M.E.M., Lira, V.V., Oliveira, R.F., Costa, N.L. & Oliveira, H.M.L. (2020). A new approach to the traditional drying models for the thin-layer drying kinetics of chickpeas. Journal of Food Process Engineering, 43(12), 1-11. DOI: https://doi.org/10.1111/jfpe.13569
Felizardo, M.P., Merlo, G.R.F. & Maia, G.D. (2021). Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosystems Engineering, 205(1), 234-245. DOI: https://doi.org/10.1016/j.biosystemseng.2021.03.008
Ferreira Junior, W.N., Resende, O., Pinheiro, G.K.I., Silva, L.C.M., Souza, D.G. & Sousa, K.A. (2021). Modeling and thermodynamic properties of the drying of tamarind (Tamarindus indica L.) seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 25(1), 37-43. DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n1p37-43
Guex, C.G., Cassanego, G.B., Dornelles, R.C., Casoti, R., Engelmann, A.M., Somacal, S., Maciel, R.M., Duarte, T., Borges, W.S., Andrade, C.M., Emanuelli, T., Danesi, C.C., Ribeiro, E.E. & Bauermann, L.F. (2022). Tucumã (Astrocaryum aculeatum) extract: phytochemical characterization, acute and subacute oral toxicity studies in Wistar rats. Drug and Chemical Toxicology, 22(2), 810-821. DOI: https://doi.org/10.1080/01480545.2020.1777151
Jha, P., Meghwal, M., Prabhakar, P.K. & Singh, A. (2021). Exploring effects of different pretreatments on drying kinetics, moisture diffusion, physico-functional, and flow properties of banana flower powder. Journal of Food Processing and Preservation, 45(4), 1-15. DOI: https://doi.org/10.1111/jfpp.15356
Jideani, V.A. & Mpotokwana, S.M. (2009). Modeling of water absorption of botswana bambara varieties using Peleg's equation. Journal of Food Engineering, 92(2), 182-188. DOI: https://doi.org/10.1016/j.jfoodeng.2008.10.040
Leite, D.D.F., Queiroz, A.J.M., Figueiredo, R.M.F., Santos, F.S., Silva, S.N. & Santos, D.C. (2022). Mathematical modeling and thermodynamic properties in the drying of citron watermelon seeds. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(1), 67-74. DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n1p67-74
Madamba, P.S., Driscoll, R.H. & Buckle, K.A. (1996). The thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29(1), 75-97. DOI: https://doi.org/10.1016/0260-8774(95)00062-3
Matos, K.A.N., Lima, D.P., Barbosa, A.P.P., Mercadante, A.Z. & Chisté, R.C. (2019). Peels of tucumã (Astrocaryum vulgare) and peach palm (Bactris gasipaes) are by-products classified as very high carotenoid sources. Food Chemistry, 272(1), 216-221. DOI: https://doi.org/10.1016/j.foodchem.2018.08.053
Mbegbu, N.N., Nwajinka, C.O. & Amaefule, D.O. (2021). Thin layer drying models and characteristics of scent leaves (Ocimum gratissimum) and lemon basil leaves (Ocimum africanum). Heliyon, 7(1), 1-9. DOI: https://doi.org/10.1016/j.heliyon.2021.e05945
Mishra, S., Sahu, J.K., Sanwal, N. & Sharma, N. (2021). Hot air convective drying of small cardamom (Elettaria cardamomum Maton): Evaluation of drying, color, and aroma kinetics. Journal of Food Process Engineering, 44(4), 1-11. DOI: https://doi.org/10.1111/jfpe.13649
Mondaca, R.L., Bravo, L.Z., Ah-Hen, K. & Scalac, K. D. (2021). Effect of drying methods on drying kinetics, energy features, thermophysical and microstructural properties of Stevia rebaudiana leaves. Journal of the Science of Food and Agriculture, 101(15), 6484-6495. DOI: https://doi.org/10.1002/jsfa.11320
Morais, M.F., Santos, J.R.O., Santos, M.P., Santos, D.C., Costa, T.N. & Lima, J.B. (2019). Modeling and thermodynamic properties of ‘bacaba’ pulp drying. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(9), 702-708. DOI: https://doi.org/10.1590/1807-1929/agriambi.v23n9p702-708
Moura, H.V., Figueirêdo, R.M.F., Queiroz, A.J.M., Silva, E.T.V., Esmero, J.A.D. & Lisbôa, J.F. (2021). Mathematical modeling and thermodynamic properties of the drying kinetics of trapiá residues. Journal of Food Process Engineering, 44(8), 1-11. DOI: https://doi.org/10.1111/jfpe.13768
Nayak, P.K.; Chandrasekar, C.M.; Haque, A. & Kesavan, R.K. (2021). Influence of pre-treatments on the degradation kinetics of chlorophylls in morisa xak (Amaranthus caudatus) leaves after microwave drying. Journal of Food Process Engineering, 44(9), 1-13. DOI: https://doi.org/10.1111/jfpe.13790
Niño, A.D., Sandoval, O.S., Vidaña, E.C.L., Munguía, A.L.C., Figueroa, I.P. & Valladares, O.G. (2021). Influence of process variables on the drying kinetics and color properties of pear slices (Pyrus communis). Color Research and Application, 46(5), 1128-1141. DOI: https://doi.org/10.1002/col.22625
Qi, Y., Yu, F., Wang, X., Wan, N., Yang, M., Wu, Z. & Li, Y. (2021). Drying of wolfberry fruit juice using low-intensity pulsed ultrasound. LWT - Food Science and Technology, 141(1), 1-8. DOI: https://doi.org/10.1016/j.lwt.2021.110953
Resende, O., Oliveira, D.E.C., Costa, L.M. & Ferreira Júnior, W.N. (2018). Drying kinetics of baru fruits (Dipteryx alata Vogel). Engenharia Agrícola, 38(1), 103-109. DOI: https://doi.org/10.1590/1809-4430-eng.agric.v38n1p103-109/2018
Santos, D.C., Queiroz, A.J.M., Figueirêdo, R.M.F. & Oliveira, E.N.A. (2013). Cinética de secagem de farinha de grãos residuais de urucum. Revista Brasileira de Engenharia Agrícola e Ambiental, 17(2), 223-231. DOI: https://doi.org/10.1590/S1415-43662013000200014
Santos, M.F.G., Mamede, R.V.S., Rufino, M.S.M., Brito, E.S. & Alves, R.E. (2015a). Amazonian native palm fruits as sources of antioxidant bioactive compounds. Antioxidants, 4(3), 591-602. DOI: https://doi.org/10.3390/antiox4030591
Santos, A.C.V., Fernandes, C.C., Lopes, L.M. & Sousa, A.H. (2015b). Use of plant oils from the southwestern Amazon for the control of maize weevil. Journal of Stored Products Research, 63(1), 67-70. DOI: https://doi.org/10.1016/j.jspr.2015.07.002
Santos, F.S., Figueirêdo, R.M.F., Queiroz, A.J.M. & Santos, D.C. (2017). Drying kinetics and physical and chemical characterization of white-fleshed ‘pitaya’ peels. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 872-877. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n12p872-877
Santos, D.C., Leite, D.D.F., Lisbôa, J.F., Ferreira, J.P.L., Santos, F.S., Lima, T.L.B., Figueiredo, R.M.F. & Costa, T.N. (2019a). Modelagem e propriedades termodinâmicas da secagem de fatias de acuri. Brazilian Journal of Food Technology, 22(1), 1-12. DOI: https://doi.org/10.1590/1981-6723.03118
Santos, D.C., Costa, T.N., Franco, F.B., Castro, R.C., Ferreira, J.P.L., Souza, M.A.S. & Santos, J.C.P. (2019b). Drying kinetics and thermodynamic properties of patawa pulp (Oenocarpus bataua Mart.). Brazilian Journal of Food Technology, 22(1), 1-11. DOI: https://doi.org/10.1590/1981-6723.30518
Silva, R.S., Santos, C.L., Mar, J.M., Kluczkovski, A.M., Figueiredo, J.A.; Borges, S.V.; Bakry, A.M., Sanches, E.A. & Campelo, P.H. (2018a). Physicochemical properties of tucumã (Astrocaryum aculeatum) powders with different carbohydrate biopolymers. LWT - Food Science and Technology, 94(1), 79-86. DOI: https://doi.org/10.1016/j.lwt.2018.04.047
Silva, M.B., Perez, V.H., Pereira, N.R., Silveira, T.C., Silva, N.R.F., Andrade, C.M. & Sampaio, R.M. (2018b). Drying kinetic of tucum fruits (Astrocaryum aculeatum Meyer): physicochemical and functional properties characterization. Journal of Food Science and Technology, 55(1), 1656-1666. DOI: https://doi.org/10.1007/s13197-018-3077-2
Tan, S., Miao, Y., Xiang, H., Tan, W. & Li, W. (2021). Effects of air-impingement jet drying on drying kinetics and quality retention of tomato slices. Food Science and Biotechnology, v.30, n.1, p.691-699. DOI: https://doi.org/10.1007/s10068-021-00904-0
Tarafdar, A., Jothi, N. & Kaur, B.P. (2021). Mathematical and artificial neural network modeling for vacuum drying kinetics of Moringa oleifera leaves followed by determination of energy consumption and mass transfer parameters. Journal of Applied Research on Medicinal and Aromatic Plants, 24(1), 1-8. DOI: https://doi.org/10.1016/j.jarmap.2021.100306
Taskin, O., Polat, A., Etemoglu, A.B. & Izli, N. (2021). Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective?dried banana slices. Journal of Thermal Analysis and Calorimetry, 147(1), 2343-2351. DOI: https://doi.org/10.1007/s10973-021-10639-z
Zheng, Q., Li, X., Liu, T., Zhang, Y., Liu, J., Zhang, H., Li, W. & Gao, X. (2021). Effects of air-impingement jet drying on drying kinetics, color, polyphenol compounds, and antioxidant activities of Boletus aereus slices. Journal of Food Science, 86(5), 2131-2144. DOI: https://doi.org/10.1111/1750-3841.15702
Zogzas, N.P., Mauroulis, Z.B. & Marinos-Kouris, D. (1996). Moisture diffusivity data compilation in foodstuffs. Drying Technology, 14(10), 2225-2253. DOI: https://doi.org/10.1080/07373939608917205
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 HOLOS
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.