Analysis of the bond stress when using GFRP bars
DOI:
https://doi.org/10.15628/holos.2021.9386Palavras-chave:
Barras de GFRP, aderência, ensaio de arrancamento, variabilidade.Resumo
For most of the structural solutions, the construction industry in Brazil is based on the use of conventional reinforced concrete elements composed of concrete and steel bars. However, problems related to this traditional structural system, such as the corrosion of metallic bars exposed to aggressiveness environments, motivate the study of new materials to be used as a replacement of conventional bars. In this context, FRP (Fiber Reinforced Polymers) bars can be viable due to their good mechanical properties and resistance to aggressive environmental agents. Thus, the main objective of this paper was the evaluation of the bond stress of GFRP bars using pullout tests. Thus, twenty specimens were analyzed with two concrete compressive strengths of 30 MPa and 60 MPa and two different GFRP bar diameters of 9.5 and 16.0 mm. According to the test results, it was verified a high variability of the adhesion between the GFRP bar and the concrete. Concerning the statistical analysis of pullout tests performed and considering the methodology proposed to analyze the quality control, the variation coefficient varied from 13.71% to 20.17%, classifying the pullout tests performed as medium or poor. These results demonstrate that the response of the GFRP bars obtained in the pullout tests was not reliable, demonstrating the need for new research to obtain adhesion coefficients and anchoring lengths for use in structural designs with such materials.
Downloads
Referências
Ahmed, M. S. S., Sennah, K., Azimi, H., & Afefy, H.M.E. (2020). Bond Characteristics of Glass Fiber Reinforced Polymer Bars in High-Strength Concrete. ICE Proceedings Structures and Buildings.
Almeida Filho, F. M. (2006) Contribuição ao estudo da aderência entre barras de aço e concretos auto-adensáveis. PhD Thesis. EESC. São Carlos. SP. Brasil.
AMERICAN CONCRETE INSTITUTE (2015). ACI 440.1R – Guide for design and concrete reinforced with FRP bars. United States.
AMERICAN SOCIETY FOR TESTING AND MATERIALS (2012) . ASTM D 3916 - Standard test method for tensile properties of pultruded glass-fiber-reinforced plastic rod”. United States.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2018). NBR 5739: Concreto - Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2011). NBR 7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2017). NBR 8522: Concreto - Determinação dos módulos estáticos de elasticidade e de deformação à compressão. Rio de Janeiro.
Barbosa, M. T. G. (2001). Avaliação do comportamento da aderência em concretos de diferentes classes de resistência. PhD Thesis. UFRJ - COPE. Rio de Janeiro. RJ.
Bakis, C. E., Uppuluri, V. S., Nanni, A.; & Boothby, T. E. (1998). Analysis of bonding mechanisms of smooth and lugged FRP rods embedded in concrete. Composites Science and Technology. v. 58. p. 1307-1319. DOI: https://doi.org/10.1016/S0266-3538(98)00016-5
Benmokrane, B, Tighiouart, B.; & Chaallal, O. (1996). Bond strength and load distribution of composite GFRP reinforcing bars in concrete. ACI Materials Journal. v.93. n.3. p. 246-253. DOI: https://doi.org/10.14359/9810
Bertolini, L. (2010). Materiais de construção. São Paulo: Oficina de textos. 408 pp.
Castro, C. M. (2002). Concreto de Alto Desempenho: Estudo da Aderência com a Armadura sob Ações Repetidas. Master Dissertation. EESC. São Carlos. SP.
Couto, I. A. (2007). Análise teórica e experimental do comportamento da aderência entre o concreto e barras de fibra de vidro impregnada por polímero. Master Dissertation. EESC. São Carlos. SP.
Cook, R. A., Doerr. G. T., & Klingner. R. E. (1993). Bond stress model for design of adhesive anchors. ACI Structural Journal. 90 (5). pp. 514-524. DOI: https://doi.org/10.14359/3945
Dalfré, G. M., Mazzú, A. D. E., & Ferreira, F. G. S. (2021). Discussões sobre o dimensionamento de vigas de concreto armadas à flexão com barras de GFRP. CONCRETO & CONSTRUÇÃO, v. 101, p. 79-86. DOI: https://doi.org/10.4322/1809-7197.2021.101.0008
Dalfré, G. M., Mazzú, A. D. E., & Ferreira, F. G. S. (2020). Dimensionamento de vigas de concreto armadas à flexão com barras não metálicas. CONCRETO & CONSTRUÇÃO, V. 98, P. 72-78, 2020. DOI: https://doi.org/10.4322/1809-7197.2020.98.0007
Domone, P. L. (2006). A review of the hardened mechanical properties of self-compacting concrete. Cement & Concrete Composites. DOI: https://doi.org/10.1016/j.cemconcomp.2006.07.010
Ehsani, M. R.; Sadatmanesh, H., & Tao, S. (1993). Bond of GFRP Rebars to Ordinary-Strength Concrete. ACI Symposium on non metallics continuous reinforcement. p. 324-345.
Fernandes, R. M. (2000). Influência das Ações Repetidas na Aderência Aço-Concreto. Master Dissertation. EESC. São Carlos. SP.
França, H.V. Aderência aço-concreto – Uma análise do comportamento do concreto fabricado com resíduos de borracha. (2004). Master Dissertation. UNESP. Ilha Solteira. SP.
HUGHES BROTHERS (2006). Available in: .
Mazzú, A. D. E. (2020). Estudo sobre a substituição de armadura metálica por barras de GFRP em vigas de concreto armadas à flexão quando submetidas ao ataque acelerado de íons cloreto. 190p. Dissertação (Mestrado em Engenharia Civil) – Universidade Federal de São Carlos, São Carlos. DOI: https://doi.org/10.4322/conpat2021.414
Melchers, R. E. (1987). Structural Reliability: analysis and prediction. Ellis Horwood Limited.
Mesfer, M. A. (2007). Effect of accelerated laboratory conditions on tensile strength and moisture absorption of two types of GFRP bars. In: Proceedings of the eighth international symposium on fiber reinforced polymer reinforcement for concrete structures (FRPRCS-8); ISBN: 978-960-89691-0-0.
RILEM/FIP/CEB (1973). Bond Test for Reinforcing Steel. 1. Beam Test (7 – II – 28 D). 2. Pullout Test (7 – II – 128). Tentative Recommendations. RILEM Journal Materials and Structurals, v.6. n. 32. p. 96-105.
Spagnuolo, S., Rinaldi, Z., Donnini, J., & Nanni, A. (2021). Physical, mechanical and durability properties of GFRP bars with modified acrylic resin (modar) matrix. Composite Structures, v. 262. DOI: https://doi.org/10.1016/j.compstruct.2021.113557
Pilakoutas. K., Hafeez. S., & Dritsos. S. (1994). Residual bond strength of polymer adhesive anchored reinforcement subjected to high temperatures. Materials and Structures. 27. pp. 527-531. DOI: https://doi.org/10.1007/BF02473213
Tighiouart, B., Benmokrane, B., & Grao, D. (1998). Investigation of bond in concrete with fiber reinforced polymer (FRP) bar. Construction Building and Materials. v. 12. n. 8. p. 453-462. DOI: https://doi.org/10.1016/S0950-0618(98)00027-0