ANÁLISIS DEL COMPORTAMIENTO DEL ALGORITMO SVM PARA DIFERENTES KERNEL EN AMBIENTES CONTROLADOS

Autores

DOI:

https://doi.org/10.15628/holos.2018.5563

Palavras-chave:

aprendizaje automático, SVM, kernel, estudio experimental

Resumo

En el presente trabajo se realiza una investigación del comportamiento de la técnica de aprendizaje automático SVM en diferentes ambientes controlados, usando cinco kernel. Primero se analiza el comportamiento de los clasificadores ante datos con valores perdidos. Luego se prueban en ambientes con valores ruidosos. La última tarea es el análisis de su comportamiento una vez que se adicionan atributos irrelevantes. Para validar los resultados se realizan pruebas estadísticas no paramétricas. Se encontró que la técnica SVM es muy robusta ante los tres ambientes antes mencionados y el kernel polinómico arrojó los mejores resultados de clasificación.

Downloads

Não há dados estatísticos.

Referências

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2010). Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17(255–287), 11.

Amari, S., & Wu, S. (1999). Improving support vector machine classifiers by modifying kernel functions. Neural Networks, 12(6), 783–789. https://doi.org/10.1016/S0893-6080(99)00032-5

Bache, K., & Lichman, M. (2013). UCI machine learning repository.

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159.

Calvo, B., & Santafé, G. (2016). scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems. The R Journal, 8(1), 248–256.

Chang, C.-C., & Lin, C.-J. (2012). LIBSVM: a library for support vector machines. Retrieved from http://www. csie. ntu. edu. tw/cjlin/libsvm

Chorowski, J., Wang, J., & Zurada, J. M. (2014). Review and performance comparison of SVM-and ELM-based classifiers. Neurocomputing, 128, 507–516.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

Cunningham, S. J., & Denize, P. (1994). A tool for model generation and knowledge acquisition. In Selecting Models from Data (pp. 471–478). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4612-2660-4_48

Demsar, J. (2006). Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res., 7, 1–30.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7), 1895–1923.

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1), 3133–3181.

Foster, K. R., Koprowski, R., & Skufca, J. D. (2014). Machine learning, medical diagnosis, and biomedical engineering research-commentary. BioMedical Engineering OnLine, 13(1), 94.

García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences, 180(10), 2044–2064.

García, S., & Herrera, F. (2008). An Extension on ``Statistical Comparisons of Classifiers over Multiple Data Sets’’ for all Pairwise Comparisons. Journal of Machine Learning Research, 9(Dec), 2677–2694.

García, S., & Herrera, F. (2009). Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy. Evolutionary Computation, 17(3), 275–306.

Glick, M., Jenkins, J. L., Nettles, J. H., Hitchings, H., & Davies, J. W. (2006). Enrichment of High-Throughput Screening Data with Increasing Levels of Noise Using Support Vector Machines, Recursive Partitioning, and Laplacian-Modified Naive Bayesian Classifiers. Journal of Chemical Information and Modeling, 46(1), 193–200. https://doi.org/10.1021/ci050374h

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.

Hastie, T., Tibshirani, R., & others. (1998). Classification by pairwise coupling. The Annals of Statistics, 26(2), 451–471.

Hsu, C.-W., & Lin, C.-J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2), 415–425. https://doi.org/10.1109/72.991427

Jayadeva, Khemchandani, R., & Chandra, S. (2007). Twin support vector machines for pattern classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 905–910.

Lee, Y.-J., & Mangasarian, O. L. (2001). SSVM: A Smooth Support Vector Machine for Classification. Computational Optimization and Applications, 20(1), 5–22. https://doi.org/10.1023/A:1011215321374

Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17(2), 145–151.

Mangasarian, O. L., & Kou, G. (2007). Feature Selection for Nonlinear Kernel Support Vector Machines. In Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007) (pp. 231–236). https://doi.org/10.1109/ICDMW.2007.30

Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine under test. Neurocomputing, 55(1–2), 169–186. https://doi.org/10.1016/S0925-2312(03)00431-4

Platt, J. C. (1999). 12 fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods, 185–208.

Rao, C. R., & Govindaraju, V. (2013). Handbook of Statistics: Machine Learning: Theory and Applications (Vol. 31). Newnes. Retrieved from https://www.google.com/books?hl=es&lr=&id=WhqLgjO5HQgC&oi=fnd&pg=PR1&dq=review+machine+learning+applications&ots=nLClo5cIrb&sig=aJkc9mgZm0TzZg8Vw6imuXunH-w

Santafe, G., Inza, I., & Lozano, J. A. (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44(4), 467–508.

Schölkopf, B., Mika, S., Burges, C. J., Knirsch, P., Müller, K.-R., Rätsch, G., & Smola, A. J. (1999). Input space versus feature space in kernel-based methods. Neural Networks, IEEE Transactions On, 10(5), 1000–1017.

Scholkopf, B., Sung, K.-K., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T., & Vapnik, V. (1997). Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 45(11), 2758–2765. https://doi.org/10.1109/78.650102

Tang, Y., Zhang, Y.-Q., Chawla, N. V., & Krasser, S. (2009). SVMs modeling for highly imbalanced classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions On, 39(1), 281–288.

Vapnik, V., & Chervonenkis, A. (1964). A note on one class of perceptrons. Automation and Remote Control, 25(1).

Wang, Z., & Xue, X. (2014). Multi-class support vector machine. In Support Vector Machines Applications (pp. 23–48). Springer. Retrieved from http://link.springer.com/chapter/10.1007/978-3-319-02300-7_2

Weston, J., & Watkins, C. (1998). Multi-class support vector machines. Citeseer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.50.9594&rep=rep1&type=pdf

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., … others. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.

Zhu, X., Wu, X., & Chen, Q. (2003). Eliminating class noise in large datasets. In ICML (Vol. 3, pp. 920–927). Retrieved from http://www.aaai.org/Papers/ICML/2003/ICML03-119.pdf

Publicado

14/11/2018

Como Citar

López Cabrera, J. D., & Pereira-Toledo, A. (2018). ANÁLISIS DEL COMPORTAMIENTO DEL ALGORITMO SVM PARA DIFERENTES KERNEL EN AMBIENTES CONTROLADOS. HOLOS, 5, 101–115. https://doi.org/10.15628/holos.2018.5563

Edição

Seção

ARTIGOS

Artigos Semelhantes

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.