DRAG COEFFICIENT AND MODELING THE VERTICAL WIND PROFILE IN FORESTS
DOI:
https://doi.org/10.15628/holos.2019.7393Palavras-chave:
Dossel, velocidade do vento, coeficiente de arrasto, densidade foliar.Resumo
As dificuldades em modelar e determinar parâmetros importantes, por exemplo, o coeficiente de arrasto para os fluxos em florestas são temas de muitas pesquisas que tentam resgatar as abordagens clássicas e esclarecer alguns aspectos presentes na literatura. Com base nisso, um modelo unidimensional analítico foi desenvolvido para descrever o perfil do coeficiente de arrasto dentro do dossel usando a velocidade média do vento acima do dossel e a densidade da área foliar. O modelo conseguiu representar satisfatoriamente o perfil do coeficiente de arrasto e a análise comparativa indica que o perfil do coeficiente de arrasto empírico é semelhante ao perfil inferido, sugerindo que o modelo pode ser uma alternativa a ser utilizada na parametrização e compreensão das interações vento-copa.Downloads
Referências
Amiro, B. D. (1990). Comparison of turbulence statistics within three boreal forest canopies. Boundary Layer Meteorology, 51, 99–121.
Belcher, S. E. & Hunt, J. C. R. (1998). Turbulent flow over hills and waves. Annual Review of Fluid Mechanics, 30(1), 507-538.
Belcher S., Harman I. & Finnigan J. (2012). The wind in the willows: flows in forest canopies in complex terrain. Annual Review Fluid Mechanics, 44, 479–504.
Brunet, Y., Finningan, J., & Raupach, M. (1994). A wind tunnel study of air flow in waving wheatsingle point velocity statistics. Boundary Layer Meteorology, 70, 95–132.
Cescatti, A. & Marcolla, B. (2004). Drag Coefficient and Turbulence Intensity in Conifer Canopies Agricultural and Forest Meteorology, 121, 197-206.
Dias-Júnior, C. Q., Sá, L. D., Marques Filho, E. P., Santana, R. A., Mauder, M. & Manzi, A. O. (2017). Turbulence regimes in the stable boundary layer above and within the Amazon forest. Agricultural and Forest Meteorology, 233, 122–132.
Finnigan J. (2000). Turbulence in plant canopies. Annual Review of Fluid Mechanics, 32, 519–571.
Fitzjarrald, D. R., Moore, K. E., Cabral, O. M. R., Scolar, J., Manzi, A. O. & Abreu Sá, L. D. (1990a). Daytime turbulent exchange between the Amazon forest and the atmosphere, Journal of Geophysical Research: Atmospheres, 95(10), 16–838.
Fitzjarrald, D. R. & Moore, K. E. (1990b). Mechanisms of nocturnal exchange between the rain forest and the atmosphere, Journal of Geophysical Research, 95(10), 16839–16850.
Fitzjarrald, D. R., Stormwind, B. L., Fisch, G. & Cabral, O.M. R. (1988). Turbulent transport observed just above the Amazon forest, Journal of Geophysical Research, 93(2), 1551–1563.
Kaimal, J. C. & Finnigan, J. J. (1994). Atmospheric Boundary Layer Flows, Oxford University Press, New York, EUA, 289 pp.
Katul, G. G, Mahrt, L., Poggi, D. & Sanz, C. (2004). One and Two Equation Models for Canopy Turbulence. Boundary Layer Meteorology, 113, 81-109
Khorasanizadah, H. & Mohammadi, K. 2013. Introducing the best model for predicting the monthly mean global solar radiation over six major cities of Iran. Energy, 51, 257-266.
Marcolla, B., Pitacco, A. & Cescatti, A. (2003). Canopy architecture and turbulence structure in a coniferous forest. Boundary Layer Meteorology, 108, 39–59.
Mahrt, L., Lee, X., Black, A., Neumann, H. & Staebler, R. M. (2000). Nocturnal mixing in a forest subcanopy. Agricultural and Forest Meteorology, 101, 67–78.
Massman, W. J. (1997). An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Boundary Layer Meteorology, 83, 407–421.
Oliveira, P. E. S., Acevedo, O. C., Moraes, O. L. L., Zimmermann, H. R. & Teichrieb, C. (2013). Nocturnal intermittent coupling between the interior of a pine forest and the air above it. Boundary Layer Meteorology, 146, 45–64.
Raupach, M.R., Finnigan, J.J. & Brunt, R. (1996). Coherent eddies and turbulence in vegetation canopies the mixing-layer analogy. Boundary Layer Meteorology. 78, 351-382.
Santana, R. A. S., Dias-Junior, C. Q., Val, R. S. D., Tota, J. & Fitzjarrald, D. R. (2017). Observing and Modeling the Vertical Wind Profile at Multiple Sites in and Above the Amazon Rain Forest Canopy, Advances in Meteorology, http://dx.doi.org/10.1155/2017/5436157, Article ID 5436157, 8 pages.
Santos, A. B., Tóta, J., Moura, M. A. L., Fitzjarrald, D. R., Santana, R. A. S., Andrade, A. M. D. & Carneiro, R. G. (2013). Dinâmica do Escoamento de Ar Acima e Dentro de uma Floresta Tropical Densa sobre Terreno Complexo na Amazônia. Revista Brasileira de Geografia Física, 6(2), 308–319.
Santos, D. M., Acevedo, O. C., Chamecki, M., Fuentes, J. D., Gerken, T. & Stoy, P. C. (2016). Temporal Scales of the Nocturnal Flow Within and Above a Forest Canopy in Amazonia, Boundary Layer Meteorology, 161, 73–98, doi:10.1007/s10546-016-0158-5,
Shaw, R. H. (1977). Secondary wind speed maxima inside plant canopies. Journal of Applied Meteorology, 16, 514–521.
Shaw, R. H., Den Hartog, G. & Neumann, H. H. (1988). Influence of foliar density andthermal-stability on profiles of Reynolds stress and turbulence intensity in adeciduous forest. Boundary Layer Meteorology, 45, 391–409.
Souza, C. M., Dias-Júnior, C. Q., Tóta, J., & Abreu Sá, L. D. (2016). An empirical-analytical model of the vertical wind speed profile above and within an Amazon forest site. Meteorological Applications, 23(1), 158–164.
Thom, A. S. (1971). Momentum absorption by vegetation. Quarterly Journal of the Royal Meteorological Society, 97, 414–428.
Tóta, J., Fitzjarrald, D. R., Staebler, R. M., Sakai, R. K., Moraes, O. L. L., Acevedo, O. C., Wofsy, S. C. & Manzi, A. (2008). Amazon rain forest subcanopy flow and the carbon budget: Santarem LBA-ECO site, Journal of Geophysical Research: Biogeosciences, 113, doi:10.1029/2007JG000597.
Tóta, J., Fitzjarrald, D. R. & da Silva Dias, M. A. F. (2012). Amazon rainforest exchange ofcarbon and subcanopy air flow: manaus LBA site-a complex terrain condition. The Scientific World Journal, 165067, http://dx.doi.org/10.1100/2012/165067.
Wilks D. S. (2011). Statistical methods in the atmospheric sciences. 3rd Ed, Academic, New York, 676 pp.
Willmott C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309-1313.
Wilson, N. R. & Shaw, R. H. (1977). A higher order closure model for canopy flow. Journal of Applied Meteorology, 16, 1197–1205.
Xu, X. & Yi, C. (2013). The influence of geometry on recirculation and CO2 transport over forested hills. Meteorology and Atmospheric Physics, 119, 187–196.
Xu, X., Yi, C. & Kutter, E. (2015). Stably stratified canopy flow in complex terrain. Atmospheric Chemistry and Physics, 15, 7457–7470.
Xu, X., Yi, C., Montagnani, L. & Kutter, E. (2017). Numerical study of the interplay between thermo-topographic slope flow and synoptic flow on canopy transport processes. Agricultural and Forest Meteorology. http://dx.doi.org/10.1016/j.agrformet.2017.03.004
Yi, C., Monson, R. K., Zhai, Z., Anderson, D. E., Lamb, B. Allwine, G., Turnipseed, A. A. & Burns, S. P. (2005). Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. Journal of Geophysical Research, 110, D22303, doi:10.1029/2005JD006282.
Yi, C. (2008). Momentum transfer within canopies. Journal of Applied Meteorology and Climatology, 47(1), 262–275. http://dx.doi.org/10.1175/2007JAMC1667.1.