APPLICATION OF MANGANESE-BASED OXIDES AS OXYGEN CARRIERS IN CHEMICAL LOOPING PROCESSES: A BIBLIOMETRIC ANALYSIS

Autores

DOI:

https://doi.org/10.15628/holos.2024.17226

Palavras-chave:

Transportador de oxigênio, Manganês, Análise bibliométrica, Recirculação Química, Combustão por Recirculação Química

Resumo

Este artigo descreve um estudo geral dos transportadores de oxigênio (TOs) à base de manganês em processos de recirculação química (RQ) entre 2006 e 2023 através de uma análise bibliométrica cuidadosa. Para tal, foram selecionados artigos científicos e verificados parâmetros bibliométricos, destacando os principais desafios e o estado atual desta área de investigação. Através de palavras-chave, foram encontrados 426 documentos na Web of Science e 65 foram selecionados através do método ProKnow-C. A análise dos principais artigos indica que esses materiais apresentam taxas de atrito reduzidas e baixa tendência à aglomeração em reatores de leito fluidizado contínuos. Além disso, o estudo informa sobre uma possível otimização das propriedades físico-químicas dos transportadores de oxigênio, com destaque para a capacidade de transporte de oxigênio, a reatividade e a taxa de atrito. Além disso, esta pesquisa destacou o grande potencial dos TOs sintéticos à base de manganês para aplicações em processos de RQ.

Downloads

Não há dados estatísticos.

Biografia do Autor

Arivonaldo Bezerra da Silva, IFRN

O autor graduou-se em Química (2014) e Matemática (2007) pela UFRN e tornou-se técnico em alimentos pelo IFRN (2010). O pesquisador é especialista em Ensino de Matemática para o Ensino Médio pela UFRN (2016). Fez mestrado em Química (2024) pela UFRN. Atualmente é Técnico de Laboratório do IFRN/CN.

Dulce Maria de Araújo Melo, Universidade Federal do Rio Grande do Norte

A autora é graduada em Farmácia pela Universidade Federal do Ceará (1979). Seu mestrado é em Química Inorgânica pela Universidade de São Paulo (1982). Seu doutorado é em Química pela Universidade de São Paulo (1989). Desde 2006, é professora titular do Instituto de Química da Universidade Federal do Rio Grande do Norte.

Rodolfo Luiz Bezerra de Araújo Medeiros, Universidade Federal do Rio Grande do Norte

O autor é professor visitante do Programa de Pós-Graduação em Ciência e Engenharia de Materiais (PPGCEM) e da Faculdade de Ciência e Tecnologia da Universidade Federal do Rio Grande do Norte (UFRN). É graduado em Engenharia de Materiais pela UFRN (2011) e possui mestrado (2014) e doutorado (2014) em Ciência e Engenharia de Materiais pela mesma instituição.

Rebecca Araújo Barros do Nascimento Santiago, Universidade Federal do Rio Grande do Norte

A autora concluiu o doutorado (2023) e o mestrado (2019) em Ciência e Engenharia de Materiais pela UFRN e a graduação em Bacharelado em Química do Petróleo pela mesma instituição (2016).

Lamara Maciel dos Santos, Universidade Federal do Rio Grande do Norte

A autora é Bacharel em Química pela Universidade Federal do Rio Grande do Norte (2018). Mestre em Química com ênfase em Química Inorgânica e Catálise pela Universidade Federal do Rio Grande do Norte (2020). Atualmente é pesquisadora e bolsista em nível de doutorado no Programa de Pós-Graduação em Química da Universidade Federal do Rio Grande do Norte.

Referências

Abad A, Pérez-Vega R, Izquierdo MT, Gayán P, García-Labiano F, de Diego LF, Adánez J (2022). Novel magnetic manganese-iron materials for separation of solids used in high-temperature processes: Application to oxygen carriers for chemical looping combustion. Fuel 320 123901. DOI: https://doi.org/10.1016/j.fuel.2022.123901 DOI: https://doi.org/10.1016/j.fuel.2022.123901

Abad A, Labiano FG, Gayán P, de Diego LF, Adánez J (2015). Redox kinetics of CaMg0.1Ti0.125Mn0.775O2.9-delta for Chemical Looping Combustion (CLC) and Chemical Looping with Oxygen Uncoupling (CLOU). Chemical Engineering Journal 269 67 - 81. DOI: http://dx.doi.org/10.1016/j.cej.2015.01.033 DOI: https://doi.org/10.1016/j.cej.2015.01.033

Abad A, Mattisson T, Lyngfelt A, Rydén M (2006). Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85 1174–1185. DOI: https://10.1016/j.fuel.2005.11.014 DOI: https://doi.org/10.1016/j.fuel.2005.11.014

Ministry of Science, Technology, Innovations and Communications (MSTIC) (2015). Paris Agreement; MSTIC: Brasília. [https://www.gov.br/mcti/pt-br/acompanhe-o-mcti/sirene/publicacoes/acordo-de-paris-e-ndc/arquivos/pdf/acordo_paris.pdf]. Accessed in April 2023.

Adánez J, Abad A, García-Labiano F, Gayán P, de Diego LF (2012). Progress in Chemical-Looping Combustion and Reforming Technologies: Review. Progress in Energy and Combustion Science 38 215-282. DOI: https://doi:10.1016/j.pecs.2011.09.001 DOI: https://doi.org/10.1016/j.pecs.2011.09.001

Adánez-Rubio I, Mattisson T, Jacobs M, Adánez J (2023). Development of new Mn-based oxygen carriers using MgO and SiO2 as supports for Chemical Looping with Oxygen Uncoupling (CLOU). Fuel 337 127177. DOI: https://doi.org/10.1016/j.fuel.2022.127177 DOI: https://doi.org/10.1016/j.fuel.2022.127177

Adánez-Rubio I, Samprón I, Izquierdo MT, Abad A, Gayán P, Adánez J (2022). Coal and biomass combustion with CO2 capture by CLOU process using a magnetic Fe-Mn-supported CuO oxygen carrier. Fuel 314 122742. DOI: https://doi.org/10.1016/j.fuel.2021.122742 DOI: https://doi.org/10.1016/j.fuel.2021.122742

Adánez-Rubio I, Nilsson A, Izquierdo MT, Mendiara T, Abad A, Adánez J (2021). Cu-Mn oxygen carrier with improved mechanical resistance: Analyzing performance under CLC and CLOU environments. Fuel Processing Technology 217 106819. DOI: https://doi.org/10.1016/j.fuproc.2021.106819 DOI: https://doi.org/10.1016/j.fuproc.2021.106819

Adánez-Rubio I, Pérez-Astraya A, Mendiara T, Izquierdo MT, Abad A, Gayán P, de Diego LF, García-Labiano F, Adánez J (2018). Chemical looping combustion of biomass: CLOU experiments with a Cu-Mn mixed oxide. Fuel Processing Technology 172 179-186. DOI: https://doi.org/10.1016/j.fuproc.2017.12.010 DOI: https://doi.org/10.1016/j.fuproc.2017.12.010

Araújo CAA (2006). Bibliometria: evolução histórica e questões atuais. Em questão, v. 12, n. 1, p. 11-32. DOI: https://seer.ufrgs.br/index.php/EmQuestao/article/view/16

Archer D (2005). Fate of fossil fuel CO2 in geologic time. J Geophys Res 110 C09S05. DOI: https://doi:10.1029/2004JC002625 DOI: https://doi.org/10.1029/2004JC002625

Arjmand M, Leion H, Mattisson T, Lyngfelt A (2014). Investigation of different manganese ores as oxygen carriers in chemical-looping combustion (CLC) for solid fuels. Applied Energy 113 1883-1894. DOI: http://dx.doi.org/10.1016/j.apenergy.2013.06.015 DOI: https://doi.org/10.1016/j.apenergy.2013.06.015

Azimi G, Leion H, Rydén M, Mattisson T, Lyngfelt A (2013). Investigation of Different Mn−Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU). Energy Fuels 27, 367−377. DOI: https://dx.doi.org/10.1021/ef301120r DOI: https://doi.org/10.1021/ef301120r

Barua T, Horlick S, Padak B (2022). Experimental Investigation of the Effects of Fluidizing Gas on Copper−Manganese Mixed Oxide’s Reactivity for Chemical Looping Combustion of CH4. Ind. Eng. Chem. Res. 61, 7245−7254. DOI: https://doi.org/10.1021/acs.iecr.2c00633 DOI: https://doi.org/10.1021/acs.iecr.2c00633

Condori O, de Diego LF, García-Labiano F, Izquierdo MT, Abad A, Adánez J (2021). Syngas Production in a 1.5 kWth Biomass Chemical Looping Gasification Unit Using Fe and Mn Ores as the Oxygen Carrier. Energy Fuels 35, 17182−17196. DOI: https://doi.org/10.1021/acs.energyfuels.1c01878 DOI: https://doi.org/10.1021/acs.energyfuels.1c01878

Costa TR, Gayán P, Abad A, García-Labiano F, de Diego LF, Melo DMA, Adánez J (2018). Mn-based oxygen carriers prepared by impregnation for Chemical Looping Combustion with diverse fuels. Fuel Processing Technology 178 236 - 250. DOI: https://doi.org/10.1016/j.fuproc.2018.05.019 DOI: https://doi.org/10.1016/j.fuproc.2018.05.019

Costa RCP (2019). Transportadores sólidos de oxigênio a base de Cu e Mn suportados em minerais para utilização em tecnologia de recirculação química com captura de CO2. Tese (Doutorado)-UFRN, CCET, PPGQ - Natal: UFRN, 126 f.: il.

Cho P, Mattisson T, Lyngfelt A (2006). Defluidization Conditions for a Fluidized Bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 45, 968-977. DOI: https://10.1021/ie050484d DOI: https://doi.org/10.1021/ie050484d

Galinsky N, Mishra A, Zhang J, Li F (2015). Ca1-xAxMnO3 (A = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU). Applied Energy 157 358-367. DOI: http://dx.doi.org/10.1016/j.apenergy.2015.04.020 DOI: https://doi.org/10.1016/j.apenergy.2015.04.020

IPCC (Intergovernmental Panel on Climate Change) (2014). IPCC fifth assessment report. 2014: Intergovernmental panel on climate change. Available at: < https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf>. Accessed: 29 jul. 2022.

IPCC (2005): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/

Johansson M, Mattisson T, Lyngfelt A (2006). Investigation of Mn3O4 with stabilized ZrO2 for Chemical-Looping Combustion. Trans IChemE, Part A, Chemical Engineering Research and Design, 84(A9): 807– 818. DOI: https://10.1205/cherd.05206 DOI: https://doi.org/10.1205/cherd.05206

Ksepko E, Lysowski R (2021). Extremely Stable and Durable Mixed Fe–Mn Oxides Supported on ZrO2 for Practical Utilization in CLOU and CLC Processes. Catalysts 11 1285. DOI: https://doi.org/10.3390/catal11111285 DOI: https://doi.org/10.3390/catal11111285

Lacerda RTO, Ensslin L, Ensslin SR (2012). Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gest. Prod., São Carlos, v. 19, n. 1, p. 59-78. Available in: https://www.scielo.br/j/gp/a/sKh5wfCCGv68fdRP8GStLXC/ DOI: https://doi.org/10.1590/S0104-530X2012000100005

Leion H, Larring Y, Bakken E, Bredesen R, Mattisson T, Lyngfelt A (2009). Use of CaMn0.875Ti0.125O3 as Oxygen Carrier in Chemical-Looping with Oxygen Uncoupling. Energy Fuels 23, 5276–5283. DOI: https://10.1021/ef900444d DOI: https://doi.org/10.1021/ef900444d

Li J, Zhang H, Gao Z, Fu J, Ao W., Dai J (2017). CO2 Capture with Chemical Looping Combustion of Gaseous Fuels: An Overview. Energy Fuels 31, 3475−3524. DOI: https://10.1021/acs.energyfuels.6b03204 DOI: https://doi.org/10.1021/acs.energyfuels.6b03204

Liang W, Wang F, Wang C, Yang H, Cui W, Yue G (2023). Investigation on the oxygen-carrying performance and reaction kinetics of CaMnxFe1− xO3− δ perovskites prepared from red mud. Fuel 331 125929. DOI: https://doi.org/10.1016/j.fuel.2022.125929 DOI: https://doi.org/10.1016/j.fuel.2022.125929

Linderholm C, Lyngfelt A, Cuadrat A, Jerndal E (2012). Chemical-looping combustion of solid fuels – Operation in a 10 kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel 102 808-822. DOI: http://dx.doi.org/10.1016/j.fuel.2012.05.010 DOI: https://doi.org/10.1016/j.fuel.2012.05.010

Liu L, Li Z, Wang L, Zhao Z, Li Y, Cai N (2020). MgO−Kaolin-Supported Manganese Ores as Oxygen Carriers for Chemical Looping Combustion. American Chemical Society - Ind. Eng. Chem. Res. 59 7238−7246. DOI: https://10.1021/acs.iecr.9b05267 DOI: https://doi.org/10.1021/acs.iecr.9b05267

Liu X, Li L, Zhou Z, Sun Z, Duan L (2023). Oxygen uncoupling behaviour for ilmenite ore oxygen carrier generated from a calcination treatment mixed with natural manganese ore. Can J Chem Eng. 101:805–818. DOI: https://10.1002/cjce.24432 DOI: https://doi.org/10.1002/cjce.24432

Ma Z, Lu Y, Zhu L, Zhang H (2022). Synergistic effect of Ce-Mn on cyclic redox reactivity of pyrite cinder for chemical looping process. Fuel 324 124584. DOI: https://doi.org/10.1016/j.fuel.2022.124584 DOI: https://doi.org/10.1016/j.fuel.2022.124584

Matzen M, Pinkerton J, Wang X, Demirel Y (2017). Use of natural ores as oxygen carriers in chemical looping combustion: A review. International Journal of Greenhouse Gas Control 65 1 – 14. DOI: http://dx.doi.org/10.1016/j.ijggc.2017.08.008 DOI: https://doi.org/10.1016/j.ijggc.2017.08.008

Mendiara T, de Diego LF, García-Labiano F, Gayán P, Abad A, Adánez J (2014). On the use of a highly reactive iron ore in Chemical Looping Combustion of different coals. Fuel 126 239 – 249. DOI: http://dx.doi.org/10.1016/j.fuel.2014.02.061 DOI: https://doi.org/10.1016/j.fuel.2014.02.061

Mei D, Soleimanisalim AH, Lyngfelt A, Leion H, Linderholm C, Mattisson T (2022). Modelling of gas conversion with an analytical reactor model for biomass Chemical looping combustion (bio-CLC) of solid fuels. Chemical Engineering Journal 433 133563. DOI: https://doi.org/10.1016/j.cej.2021.133563 DOI: https://doi.org/10.1016/j.cej.2021.133563

Mei D, Mendiara T, Abad A, de Diego LF, García-Labiano F, Gayan P, Adánez J, Zhao H (2015). Evaluation of Manganese Minerals for Chemical Looping Combustion. Energy Fuels 29, 6605−6615. DOI: https://10.1021/acs.energyfuels.5b01293 DOI: https://doi.org/10.1021/acs.energyfuels.5b01293

Mineral commodity summaries (2022). U.S. Geological Survey, 202.p. DOI: https://doi.org/10.3133/mcs2022 DOI: https://doi.org/10.3133/mcs2022

Nandy A, Loha C, Gu S, Sarkar P, Karmakar MK, Chatterjee PK (2016). Present status and overview of Chemical Looping Combustion technology. Renewable and Sustainable Energy Reviews 59 597 – 619. DOI: http://dx.doi.org/10.1016/j.rser.2016.01.003 DOI: https://doi.org/10.1016/j.rser.2016.01.003

Nascimento RF, Ávila MF, Taranto OP, Kurozawa LE (2022). Agglomeration in fluidized bed: Bibliometric analysis, a review, and future perspectives. Powder Technology 406 117597. DOI: https://doi.org/10.1016/j.powtec.2022.117597 DOI: https://doi.org/10.1016/j.powtec.2022.117597

Nascimento RAB, Medeiros RLBA, Costa TR, Oliveira AAS, Macedo HP, Melo MAF, Melo DMA (2020). Mn/MgAl2O4 oxygen carriers for chemical looping combustion using coal: infuence of the thermal treatment on the structure and reactivity. Journal of Thermal Analysis and Calorimetry 140 2673–2685. DOI: https://doi.org/10.1007/s10973-019-09014-w DOI: https://doi.org/10.1007/s10973-019-09014-w

Nascimento RAB (2019). Minérios de ferro do brasil como transportadores de oxigênio para aplicação em processos de combustão com recirculação química. Dissertação: Mestrado. UFRN – CCET – PPGCEM, Natal, 106f.: il.

Nunes LJR (2023). The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments 10(4), 66. DOI: https://doi.org/10.3390/environments10040066 DOI: https://doi.org/10.3390/environments10040066

Pérez-Vega R, Abad A, Izquierdo MT, Gayán P, de Diego LF, Adánez J (2019). Evaluation of Mn-Fe mixed oxide doped with TiO2 for the combustion with CO2 capture by Chemical Looping assisted by Oxygen Uncoupling. Applied Energy 237 822 – 835. DOI: https://doi.org/10.1016/j.apenergy.2018.12.064 DOI: https://doi.org/10.1016/j.apenergy.2018.12.064

Pimenta AA, Portela ARMR, Oliveira CB, Ribeiro RM (2017). A bibliometria nas pesquisas acadêmicas. Scientia, v. 4, n. 7, p. 1-13. Available at: < https://archive.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf>. Accessed: 16 jun. 2022.

Rydén M, Johansson M, Cleverstam E, Lyngfelt A, Mattisson T (2010). Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion. Fuel 89 3533. DOI: https://10.1016/j.fuel.2010.06.010 DOI: https://doi.org/10.1016/j.fuel.2010.06.010

Sarshar Z, Kleitzb F, Kaliaguine S (2011). Novel oxygen carriers for chemical looping combustion: La1-xCexBO3(B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting. Energy Environ. Sci. 4, 4258. DOI: https://10.1039/c1ee01716k DOI: https://doi.org/10.1039/c1ee01716k

Shulman A, Cleverstam E, Mattisson T, Lyngfelt A (2011). Chemical – Looping with oxygen uncoupling using Mn/Mg-based oxygen carriers – Oxygen release and reactivity with methane. Fuel 90 941-950. DOI: https://10.1016/j.fuel.2010.11.044 DOI: https://doi.org/10.1016/j.fuel.2010.11.044

Sun Z, Lu DY, Ridha FN, Hughes RW, Filippou D (2017). Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion. Applied Energy 195 303-315. DOI: http://dx.doi.org/10.1016/j.apenergy.2017.03.014 DOI: https://doi.org/10.1016/j.apenergy.2017.03.014

Sundqvist S, Mattisson T, Leiona H, Lyngfelt A (2018). Oxygen release from manganese ores relevant for chemical looping with oxygen uncoupling conditions. Fuel 232 693-703. DOI: https://doi.org/10.1016/j.fuel.2018.06.024 DOI: https://doi.org/10.1016/j.fuel.2018.06.024

Tutuncu AN (2021). The Oxford Handbook of Energy Politics; Hancock, K. J., Allison, J. E., eds.: New York, cap. 2, part 1 Overview. Available at: <https://books.google.com.br/books?hl=pt-BR&lr=&id=cmkLEAAAQBAJ&oi=fnd&pg=PA23&dq=fossil+fuels&ots=FmbClqD-8R&sig=JdCUtMmd2Y1PTFEXgC4GEjNOYQw#v=onepage&q=fossil%20fuels&f=false>. Accessed: 29 jul. 2022.

Zafar Q, Abad A, Mattisson T, Geverta B, Strand M (2007). Reduction and oxidation kinetics of Mn3O4/Mg–ZrO2 oxygen carrier particles for chemical-looping combustion. Chemical Engineering Science 62 6556 – 6567. DOI: https://10.1016/j.ces.2007.07.011 DOI: https://doi.org/10.1016/j.ces.2007.07.011

Zornoza B, Mendiara T, Abad A (2022). Evaluation of oxygen carriers based on manganese‑iron mixed oxides prepared from natural ores or industrial waste products for chemical looping processes. Fuel Processing Technology 234 107313. DOI: https://doi.org/10.1016/j.fuproc.2022.107313 DOI: https://doi.org/10.1016/j.fuproc.2022.107313

Publicado

14/07/2024

Como Citar

da Silva, A. B., Maria de Araújo Melo, D., Luiz Bezerra de Araújo Medeiros, R., Araújo Barros do Nascimento Santiago, R., & Maciel dos Santos, L. (2024). APPLICATION OF MANGANESE-BASED OXIDES AS OXYGEN CARRIERS IN CHEMICAL LOOPING PROCESSES: A BIBLIOMETRIC ANALYSIS. HOLOS, 2(40). https://doi.org/10.15628/holos.2024.17226

Edição

Seção

ARTIGOS

Artigos Semelhantes

<< < 3 4 5 6 7 8 9 10 11 12 13 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.