CONTAMINAÇÃO POR CHUMBO E ALIMENTOS: BIOACUMULAÇÃO, LIMITES MÁXIMOS E EFEITOS NA SAÚDE HUMANA
DOI:
https://doi.org/10.15628/holos.2024.17372Palavras-chave:
Metais, toxicidade, limites máximos toleráveisResumo
Os metais constituem um grupo de elementos de ampla distribuição podendo ocorrer nos solos com maior frequência. O chumbo (Pb) é considerado danoso devido sua alta capacidade de bioacumulação. Essa revisão traz um compilado de informações dos efeitos bioacumulativos do chumbo no organismo humano quando ingeridos por meio da alimentação e os impactos na saúde humana. Foi realizada uma busca de artigos que tratassem sobre o efeito bioacumulativo do Pb em 10 bases de dados. Foram utilizados artigos publicados nos últimos 12 anos. Os mecanismos de toxicidade do chumbo levam a mudanças nos processos biológicos, podendo ocorrer em consequência da produção indireta de espécies reativas de oxigênio. Os limites máximos toleráveis de Pb em alimentos, determinados por legislações contribuem para que exista um parâmetro que limite a ocorrência desse metal nos alimentos. A contaminação por Pb impacta diretamente a saúde pública
Downloads
Referências
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(Cd). https://doi.org/10.1155/2019/6730305
Ametepey, S. T., Cobbina, S. J., Akpabey, F. J., Duwiejuah, A. B., & Abuntori, Z. N. (2018). Health risk assessment and heavy metal contamination levels in vegetables from tamale metropolis, Ghana. International Journal of Food Contamination, 5(1). https://doi.org/10.1186/s40550-018-0067-0
Amirah, M. N., Afiza, A. S., Faizal, W. I. W., Nurliyana, M. H., & Laili, S. (2013). Human Health Risk Assessment of Metal Contamination through Consumption of Fish. Journal of Environment Pollution and Human Health, 1(1), 1–5. https://doi.org/10.12691/jephh-1-1-1
Araújo, D. F. de S., da Silva, A. M. R. B., Lima, L. L. de A., da Silva Vasconcelos, M. A., Andrade, S. A. C., & Asfora Sarubbo, L. (2014). The concentration of minerals and physicochemical contaminants in conventional and organic vegetables. Food Control, 44, 242–248. https://doi.org/10.1016/j.foodcont.2014.04.005
Cámara-Martos, F., Sevillano-Morales, J., Rubio-Pedraza, L., Bonilla-Herrera, J., & de Haro-Bailón, A. (2021). Comparative effects of organic and conventional cropping systems on trace elements contents in vegetable brassicaceae: Risk assessment. Applied Sciences (Switzerland), 11(2), 1–15. https://doi.org/10.3390/app11020707
Chen, L., Guan, X., Zhuo, J., Han, H., Gasper, M., Doan, B., Yang, J., & Ko, T. H. (2020). Application of Double Hurdle Model on Effects of Demographics for Tea Consumption in China. Journal of Food Quality, 2020. https://doi.org/10.1155/2020/9862390
Chen, Y., Hu, W., Huang, B., Weindorf, D. C., Rajan, N., Liu, X., & Niedermann, S. (2013). Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China. Ecotoxicology and Environmental Safety, 98, 324–330. https://doi.org/10.1016/j.ecoenv.2013.09.037
Chen, Y., Huang, B., Hu, W., Weindorf, D. C., Liu, X., & Niedermann, S. (2014). Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China. Science of the Total Environment, 470–471, 1140–1150. https://doi.org/10.1016/j.scitotenv.2013.10.095
CHINA, G. 2762-2022. (2023). National food safety standard – Maximum levels of contaminants in foods. National Standard of the People’s Republic of China. https://www.mast.is/static/files/Serleyfismarkadir/Kina/Log_og_reglugerdir/gb%022762-2022-1-.pdf
Corguinha, A. P. B., Souza, G. A. de, Gonçalves, V. C., Carvalho, C. de A., Lima, W. E. A. de, Martins, F. A. D., Yamanaka, C. H., Francisco, E. A. B., & Guilherme, L. R. G. (2015). Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. Journal of Food Composition and Analysis, 37, 143–150. https://doi.org/10.1016/j.jfca.2014.08.004
Curcio, V., Macirella, R., Sesti, S., Ahmed, A. I. M., Talarico, F., Pizzolotto, R., Tagarelli, A., Mezzasalma, M., & Brunelli, E. (2022). The role of exposure window and dose in determining lead toxicity in developing Zebrafish. Chemosphere, 307(P4), 136095. https://doi.org/10.1016/j.chemosphere.2022.136095
da Silva, V. D., de Mello Gabriel, G. V., Botero, W. G., Fernandes, A. P., do Carmo, J. B., & de Oliveira, L. C. (2022). Leafy vegetables marketed as organic and conventional: assessment of essential and non-essential elements’ content. Environmental Monitoring and Assessment, 194(10), 758. https://doi.org/10.1007/s10661-022-10439-4
Dascanio, D., Prette, Z. A. P. Del, Rodrigues, O. M. P. R., & Prette, A. Del. (2016). Intoxicação infantil por chumbo: uma questão de saúde e de políticas públicas TT - Childhood lead poisoning: a health issue and public policy TT - Intoxicación infantil por plomo: una cuestión de salud y de políticas públicas. Psicol. Rev. (Belo Horizonte), 22(1), 90–111. http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1677-11682016000100007
do Nascimento, S. N., Charão, M. F., Moro, A. M., Roehrs, M., Paniz, C., Baierle, M., Brucker, N., Gioda, A., Barbosa, F., Bohrer, D., Ávila, D. S., & Garcia, S. C. (2014). Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of southern Brazil. International Journal of Environmental Research and Public Health, 11(10), 10806–10823. https://doi.org/10.3390/ijerph111010806
Drava, G., & Minganti, V. (2019). Mineral composition of organic and conventional white wines from Italy. Heliyon, 5(9), e02464. https://doi.org/10.1016/j.heliyon.2019.e02464
Elmi, A., Anderson, A. K., & Albinali, A. S. (2019). Comparative study of conventional and organic vegetable produce quality and public perception in Kuwait. Kuwait Journal of Science, 46(4), 120–127.
European Commission. (2015). COMMISSION REGULATION (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in foodstuff. Official Journal of the European Union, 2015(1881), 1–5. https://op.europa.eu/en/publication-detail/-/publication/4ea62ae9-1bc8-11e5-a342-01aa75ed71a1/language-en%0Ahttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1006&from=EN
FAO/WHO. (2019). General Standard for Contaminants and Toxins in Food and Fee (GSCTFF) - CXS 193-1995. International Food Standards.
FAOSTAT. (2021). Food Balances. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/FBS
Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167–176. https://doi.org/10.1080/15376516.2019.1701594
García-Esquinas, E., Navas-Acien, A., Pérez-Gómez, B., & Artalejo, F. R. (2015). Association of lead and cadmium exposure with frailty in US older adults. Environmental Research, 137, 424–431. https://doi.org/10.1016/j.envres.2015.01.013
GBD 2017 Risk Factor, C. (2018). Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Stu. The Lancet, 392(10159), 1923–1994. https://doi.org/10.1016/S0140-6736(18)32225-6
Glodowska, M., & Krawczyk, J. (2017). Heavy metals concentration in conventionally and organically grown vegetables. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 9(4), 497–503.
Gomes, A. S. F. (2020). Estudo dos efeitos toxicológicos decorrentes da libertação de chumbo a partir de artes de pesca. Universidade de Aveiro.
Hadayat, N., De Oliveira, L. M., Da Silva, E., Han, L., Hussain, M., Liu, X., & Ma, L. Q. (2018). Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic. Environmental Pollution, 243, 292–300. https://doi.org/10.1016/j.envpol.2018.08.065
Hartwig, A., & Jahnke, G. (2017). Metalle und ihre Verbindungen als Kontaminanten in Lebensmitteln: Arsen, Cadmium, Blei und Aluminium. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 60(7), 715–721. https://doi.org/10.1007/s00103-017-2567-0
Hasmi, & Mallongi, A. (2016). Health risk analysis of lead exposure from fish consumption among communities along Youtefa Gulf, Jayapura. Pakistan Journal of Nutrition, 15(10), 929–935. https://doi.org/10.3923/pjn.2016.929.935
Hellwing, A. de O. B. (2022). O estresse oxidativo na doença de parkinson. Revista Brasileira de Biomedicina-RBB, 155–181. https://revistadabiomedicina.com.br/index.php/12222/article/view/129
Hisham, I. N. M., Hasim, N. I., Shaharom, N. A., & Shafie, F. A. (2021). Food safety quality of organic and conventional vegetables from farms in Malaysia. JOURNAL OF SUSTAINABILITY SCIENCE AND MANAGEMENT, 16(8), 338–349. https://doi.org/10.46754/jssm.2021.12.024
Huat, T. J., Camats-Perna, J., Newcombe, E. A., Valmas, N., Kitazawa, M., & Medeiros, R. (2019a). Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. Journal of Molecular Biology, 431(9), 1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018
Huat, T. J., Camats-Perna, J., Newcombe, E. A., Valmas, N., Kitazawa, M., & Medeiros, R. (2019b). Metal Toxicity Links to Alzheimer’s Disease and Neuroinflammation. Journal of Molecular Biology, 431(9), 1843–1868. https://doi.org/10.1016/j.jmb.2019.01.018
Junior, M. A. da C. (2014). Avaliação dos polimorfismos do Ácido Delta-aminolevulínico desidratase (ALAD) e Glutationa peroxidase (GPx) sobre estresse oxidativo em trabalhadores ocupacionalmente expostos ao chumbo.
Karnpanit, W., Benjapong, W., Srianujata, S., Rojroongwasinkul, N., Tanaviyutpakdee, P., Sakolkittinapakul, J., Poowanasatien, A., Jatutipsompol, C., & Jayasena, V. (2019). Cultivation practice on nitrate, lead and cadmium contents of vegetables and potential health risks in children. International Journal of Vegetable Science, 25(6), 514–528.
Kasperczyk, A., Machnik, G., Dobrakowski, M., Sypniewski, D., Birkner, E., & Kasperczyk, S. (2012). Gene expression and activity of antioxidant enzymes in the blood cells of workers who were occupationally exposed to lead. Toxicology, 301(1–3), 79–84. https://doi.org/10.1016/j.tox.2012.07.002
Lazarus, M., Tariba Lovaković, B., Orct, T., Sekovanić, A., Bilandžić, N., Đokić, M., Solomun Kolanović, B., Varenina, I., Jurič, A., Denžić Lugomer, M., & Bubalo, D. (2021). Difference in pesticides, trace metal(loid)s and drug residues between certified organic and conventional honeys from Croatia. Chemosphere, 266. https://doi.org/10.1016/j.chemosphere.2020.128954
Li, X., Zhang, B., Li, N., Ji, X., Liu, K., & Jin, M. (2019). Zebrafish neurobehavioral phenomics applied as the behavioral warning methods for fingerprinting endocrine disrupting effect by lead exposure at environmentally relevant level. Chemosphere, 231, 315–325. https://doi.org/10.1016/j.chemosphere.2019.05.146
Liu, T., Yang, M., Han, Z., & Ow, D. W. (2016). Rooftop production of leafy vegetables can be profitable and less contaminated than farm-grown vegetables. Agronomy for Sustainable Development, 36(3), 9. https://doi.org/10.1007/s13593-016-0378-6
Magna, G. A. M., Machado, S. L., Bagattini Portella, R., De, M., & Carvalho, F. (2013). Chumbo e cádmio detectados em alimentos vegetais e gramíneas no município de Santo Amaro - Bahia. Quim. Nova, 36(7), 989–997.
Ministério da Saúde, A. (2021). Resolução de Diretoria Colegiada - RDC no 487, de 26 de março de 2021. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2020/rdc0487_26_03_2021.pdf
Nascimento, S. N., Charão, M. F., Moro, A. M., Roehrs, M., Paniz, C., Baierle, M., Brucker, N., Gioda, A., Barbosa, F., Bohrer, D., Ávila, D. S., & Garcia, S. C. (2014). Evaluation of toxic metals and essential elements in children with learning disabilities from a rural area of southern Brazil. International Journal of Environmental Research and Public Health, 11(10), 10806–10823. https://doi.org/10.3390/ijerph111010806
Nedzarek, A., Tórz, A., Karakiewicz, B., Clark, J. S., Laszczyńska, M., Kaleta, A., & Adler, G. (2013). Concentrations of heavy metals (Mn, Co, Ni, Cr, Ag, Pb) in coffee. Acta Biochimica Polonica, 60(4), 623–627. https://doi.org/10.18388/abp.2013_2031
Oladoyinbo, C. A., Ede, E. K., Akinbule, O. O., Sobo, A. A., & Maxwell, Y. M. O. (2019). Comparison of heavy metal content of selected vegetables grown with organic and inorganic fertilizers. Nigerian Journal of Nutritional Sciences, 40(2), 23–29.
OMS, O. M. da S. (2016). O Impacto De Substâncias Químicas Sobre a Saúde Pública : Fatores. Organização Pan-Americana de Saúde, 16. https://iris.paho.org/bitstream/handle/10665.2/49122/OPASBRA180022-por.pdf?sequence=1&isAllowed=y
Palisoc, S. T., Natividad, M. T., Jesus, N. de, & Carlos, J. (2018). Highly sensitive AgNP/MWCNT/Nafion modified GCE-based sensor for the determination of heavy metals in organic and non-organic vegetables. Scientific Reports, 8(1), 17445. https://doi.org/10.1038/s41598-018-35781
Parinet, J., Royer, E., Saint-Hilaire, M., Chafey, C., Noël, L., Minvielle, B., Dervilly-Pinel, G., Engel, E., & Guérin, T. (2018). Classification of trace elements in tissues from organic and conventional French pig production. Meat Science, 141(February), 28–35. https://doi.org/10.1016/j.meatsci.2018.02.008
Parreira, A. R. B. (2012). Estudo comparativo do teor de metais contaminantes em amostras de chás provenientes de agricultura tradicional e biológica. 1–125. http://repositorio.ul.pt/handle/10451/11315
Pedroso, T. F. (2017). Avaliação Da Toxicidade Do Chumbo Em Parâmetros Bioquímicos E Comportamentais: Efeito Preventivo Do Zinco E Da N-Acetilcisteína. Universidade Federal de Santa Maria.
Popović-Djordjević, J. B., Kostić, A., Rajković, M. B., Miljković, I., Krstić, Đ., Caruso, G., Siavash Moghaddam, S., & Brčeski, I. (2022). Organically vs. Conventionally Grown Vegetables: Multi-elemental Analysis and Nutritional Evaluation. Biological Trace Element Research, 200(1), 426–436. https://doi.org/10.1007/s12011-021-02639-9
Qin, N., Faludi, G., Beauclercq, S., Pitt, J., Desnica, N., Pétursdóttir, Á., Newton, E. E., Angelidis, A., Givens, I., Juniper, D., Humphries, D., Gunnlaugsdóttir, H., & Stergiadis, S. (2021). Macromineral and trace element concentrations and their seasonal variation in milk from organic and conventional dairy herds. Food Chemistry, 359(March). https://doi.org/10.1016/j.foodchem.2021.129865
Reuben, A., Caspi, A., Belsky, D. W., Broadbent, J., Harrington, H., Sugden, K., Houts, R. M., Ramrakha, S., Poulton, R., & Moffitt, T. E. (2017). Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with IQ change and socioeconomic mobility between childhood and adulthood. JAMA - Journal of the American Medical Association, 317(12), 1244–1251. https://doi.org/10.1001/jama.2017.1712
Rocha, R., Pezzini, M. F., & Poeta, J. (2018). Fontes de contaminação pelo chumbo e seus efeitos tóxicos na saúde ocupacional. Ciência Em Movimento, 19(39), 23. https://doi.org/10.15602/1983-9480/cm.v19n39p23-32
Rodríguez-Bermúdez, R., López-Alonso, M., Miranda, M., Fouz, R., Orjales, I., & Herrero-Latorre, C. (2018). Chemometric authentication of the organic status of milk on the basis of trace element content. Food Chemistry, 240(August 2017), 686–693. https://doi.org/10.1016/j.foodchem.2017.08.011
Romero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., Vélez-Terreros, P. Y., & Navarrete, H. (2020). Determination of cadmium and lead in tomato (Solanum lycopersicum) and lettuce (Lactuca sativa) consumed in Quito, Ecuador. Toxicology Reports, 7(January), 893–899. https://doi.org/10.1016/j.toxrep.2020.07.008
Seğmenoğlu, M. S., & Baydan, E. (2021). Comparison of Heavy Metal Levels of Organic and Conventional Milk and Milk Products in Turkey. Turkish Journal of Agriculture - Food Science and Technology, 9(4), 696–700. https://doi.org/10.24925/turjaf.v9i4.696-700.4007
Silva, C., Freitas, A. R., & Rodrigues, A. G. (2019). Espécies reativas e a ação dos antioxidantes. Revista Saúde Em Foco, 11, 1456–1462.
Silvestre, D. M., & Nomura, C. S. (2013). Direct determination of potentially toxic elements in rice by SS-GF AAS: Development of methods and applications. Journal of Agricultural and Food Chemistry, 61(26), 6299–6303. https://doi.org/10.1021/jf401726r
Stančić, Z., Vujević, D., Gomaz, A., Bogdan, S., & Vincek, D. (2016). Detection of heavy metals in common vegetables at Varaždin City Market, Croatia. Arhiv Za Higijenu Rada i Toksikologiju, 67(4), 340–350. https://doi.org/10.1515/aiht-2016-67-2823
Tang, J., Zhu, Q., Xu, Y., Zhou, Y., Zhu, L., Jin, L., Wang, W., Gao, L., Chen, G., & Zhao, H. (2022). Total arsenic, dimethylarsinic acid, lead, cadmium, total mercury, methylmercury and hypertension among Asian populations in the United States: NHANES 2011–2018. Ecotoxicology and Environmental Safety, 241(June). https://doi.org/10.1016/j.ecoenv.2022.113776
Villa, J. E. L., Peixoto, R. R. A., & Cadore, S. (2014). Lead and cadmium found in some chocolate bought in Brazil. September, 2–3.
Vitali Čepo, D., Pelajić, M., Vinković Vrček, I., Krivohlavek, A., Žuntar, I., & Karoglan, M. (2018). Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chemistry, 246(March 2017), 394–403. https://doi.org/10.1016/j.foodchem.2017.10.133
Vrček, I. V., Čepo, D. V., Rašić, D., Peraica, M., Žuntar, I., Bojić, M., Mendaš, G., & Medić-Šarić, M. (2014). A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. Food Chemistry, 143, 522–529. https://doi.org/10.1016/j.foodchem.2013.08.022
Wacewicz-Muczyńska, M., Socha, K., Soroczyńska, J., Niczyporuk, M., & Borawska, M. H. (2021). Cadmium, lead and mercury in the blood of psoriatic and vitiligo patients and their possible associations with dietary habits. Science of The Total Environment, 757, 143967. https://doi.org/10.1016/j.scitotenv.2020.143967
Wang, G., Dibari, J., Bind, E., Steffens, A. M., Mukherjee, J., Azuine, R. E., Singh, G. K., Hong, X., Ji, Y., Ji, H., Pearson, C., Zuckerman, B. S., Cheng, T. L., & Wang, X. (2019). Association between Maternal Exposure to Lead, Maternal Folate Status, and Intergenerational Risk of Childhood Overweight and Obesity. JAMA Network Open, 2(10). https://doi.org/10.1001/jamanetworkopen.2019.12343
Wang, H., Mao, W. F., Jiang, D. G., Liu, S. J., & Lei, Z. (2021). Cumulative Risk Assessment of Exposure to Heavy Metals through Aquatic Products in China. Biomedical and Environmental Sciences, 34(8), 606–615. https://doi.org/10.3967/bes2021.084
Wijeyaratne, W. M. D. N., & Kumari, E. A. C. S. (2021). Cadmium, Chromium, and Lead Uptake Associated Health Risk Assessment of Alternanthera sessilis: A Commonly Consumed Green Leafy Vegetable. Journal of Toxicology, 2021. https://doi.org/10.1155/2021/9936254
Wildemann, T. M., Siciliano, S. D., & Weber, L. P. (2016). The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio. Toxicology, 339, 1–8. https://doi.org/10.1016/j.tox.2015.11.004
Wilk, A., Kalisińska, E., Kosik-Bogacka, D. I., Romanowski, M., Różański, J., Ciechanowski, K., Słojewski, M., & Łanocha-Arendarczyk, N. (2017). Cadmium, lead and mercury concentrations in pathologically altered human kidneys. Environmental Geochemistry and Health, 39(4), 889–899. https://doi.org/10.1007/s10653-016-9860-y
World Health Organization. (2019). No Title. Guidance on Chemicals and Health. https://www.who.int/tools/compendium-on-health-and-environment/chemicals
World Health Organization. (2022). No Title. Lead Poisoning. https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health
Xavier, J. R., Mythri, V., Nagaraj, R., Ramakrishna, V. C. P., & Patki, P. E. (2020). Orgânico versus convencional – um estudo comparativo sobre qualidade e valor nutritivo dos selecionados culturas de vegetais do Sul da Índia. 18(1), 99–116.
Zheng, S., Wang, Q., Yuan, Y., & Sun, W. (2020). Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chemistry, 316(January), 126213. https://doi.org/10.1016/j.foodchem.2020.126213
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.