HYDRO/SOLAR COMPLEMENTARITY IN THE UPPER SÃO FRANCISCO BASIN: AN ALTERNATIVE FOR WATER RESOURCES MANAGEMENT
DOI :
https://doi.org/10.15628/holos.2023.16842Mots-clés :
Modeling and Simulation,Résumé
This paper aims to evaluate the benefit of the combined operation of a hydro/solar system at USFB, specifically at the Três Marias Hydroelectric Plant (HPP), to raise the level of its reservoir. For this purpose, the hydrological/hydroelectric modeling of USFB and Três Marias HPP is carried out on the RS MINERVE hydrological/hydroelectric simulation platform. USFB hydrological modeling is done using three hydrologically homogeneous regions and the hydrological conceptual model HBV. The hydroelectric modeling was adjusted to the physical characteristics of the Três Marias HPP. The calibration and validation process uses eight performance indicators. The chosen scenarios evaluate an increase of 7% in evapotranspiration and a decrease of 10% and 20% in precipitation, respectively. Water storage and energy generated at the Três Marias HPP are the output variables of the simulation process. From the results obtained in the simulation, the projected Photovoltaic Plant (PVP) is dimensioned. The results show that with the complementarity of the projected PVP it is possible to increase the volume of the reservoir for the proposed study scenarios. Therefore, hydro/solar complementarity at USFB can be an alternative for the management of water resources.
Téléchargements
Références
AGÊNCIA BRASIL. 2014. “Três Marias reduces generation because of the reservoir level”. Accessed: June 1, 2020. https://agenciabrasil.ebc.com.br/economia/noticia/2014-10/hidreletrica-de-tres-marias-reduz-atividade-por-causa-de-nivel-de.
ANA(a). 2020. National Water Agency. “Hydrographic Divisions of Brazil”. Accessed: June 1, 2020. https://www.ana.gov.br/panorama-das-aguas/divisoes-hidrograficas.
ANA(b). 2020. National Water Agency. “Defluent Flow of the Três Marias Reservoir”. Accessed: June 1, 2020. https://www.ana.gov.br/noticias-antigas/vazapso-defluente-do-reservata3rio-de-traas-marias.2019-03-15.9145499514.
ANA(c). 2020. National Water Agency. “Situation Room of the National Water Agency”. Accessed: June 1, 2020. https://www.ana.gov.br/sala-de-situacao/sao-francisco/sao-francisco-saiba-mais/.
ANA(d). 2020. National Water Agency. “Hidroweb Version 3.1.1”. Accessed: June 1, 2020. http://www.snirh.gov.br/hidroweb/apresentacao.
BERGSTRÖM, S. 1992. “The HBV model - Its Structure and Applications”. Accessed: June 1, 2020. https://acesse.dev/bSVdZ.
CBHSF (a). 2004. São Francisco River Basin Committee. “Plan of Water Resources for the São Francisco River Hydrographic Basin”. Accessed: June 2, 2020. https://l1nk.dev/NoPgD.
CBHSF (b). 2020. São Francisco River Basin Committee. “Main Features of the São Francisco River”. Accessed: April 9, 2020. https://cbhsaofrancisco.org.br/a-bacia/.
CGEE. 2016. Center for Management and Strategic Studies. “Droughts in Brazil”. Accessed: June 2, 2020. https://www.cgee.org.br/documents/10195/734063/seca_brasil-web.pdf.
CEMIG (a). 2012. Energy Company of Minas Gerais. “Solarimetric Atlas”. Accessed: June 2, 2020. https://encr.pw/C4HIp.
CEMIG (b). 2020. Energy Company of Minas Gerais. “Hydroelectric Plants”. Accessed: June 2, 2020. http://www.cemig.com.br/en-us/Pages/default.aspx.
COUTO, H. J. B., OLIVEIRA, R. A. E., BRAGA, P. F. A. 2015. “Incident Solar Radiation Forecast in the State of Ceará - Brazil”. Holos Journal. DOI: https://doi.org/10.15628/holos.2016.2706. DOI: https://doi.org/10.15628/holos.2016.2706
EUCLYDES, H. P., RUBERT, O. A. V., FERREIRA, P. A., SANTOS, R. M. 2001. “Hydrological Regionalization in the Upper São Francisco Basin Upstream of the Três Marias Dam, Minas Gerais”. Brazilian Journal of Water Resources. DOI: https://doi.org/10.21168/rbrh.v6n2.p81-10.
GAUDARD, L., ROMERIO, F. 2014. Reprint of “The Future of Hydropower in Europe: Interconnecting Climate, Markets and Policies”. Environmental Science & Policy. DOI: https://doi.org/10.1016/j.envsci.2014.05.005. DOI: https://doi.org/10.1016/j.envsci.2014.05.005
HERNÁNDEZ, J. G, FOEHN, A., FLUIXÁ-SANMARTÍN, J., ROQUIER, B., ARQUIOLA, J. P., CESARE, G. 2019. RS MINERVE. “Technical Manual”. Accessed: June 2, 2020. https://crealp.ch/wp-content/uploads/2021/09/rsminerve_technical_manual_v2.25.pdf.
INMET. 2020. National Institute of Meteorology. “Weather Database”. Accessed: June 2, 2020. https://portal.inmet.gov.br/dadoshistoricos.
KOSA, P. 2009. “Air Temperature and Actual Evapotranspiration Correlation Using Landsat 5 TM Satellite Imagery”. Nat. Sci. Journal. DOI: https://doi.org/10.33899/rengj.2013.75441. DOI: https://doi.org/10.33899/rengj.2013.75441
MEDEIROS, I. P. M., ANDRÉ, T. S., VALCACER, S. M., BARBOSA, C. R. F. 2020. “Evaluation of the Efficiency of a Low-Cost Solar Prototype with Motion Based on a Luminosity Sensor”. Holos Journal. DOI: https://doi.org/10.15628/holos.2020.5616. DOI: https://doi.org/10.15628/holos.2020.5616
MENDIETA, J. D. P. 2018. “Integrated Hydro/Solar Operation in the Upper São Francisco Basin”. Accessed: June 2, 2020. http://repositorio.unicamp.br/jspui/handle/REPOSIP/331524.
MORIASI, D. N., ARNOLD, J. G., VAN LIEW, M. W., BINGNER, R. L., HARMEL R. D., VEITH, T. L. 2007. “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations”. American Society of Agricultural and Biological Engineers. DOI: http://dx.doi.org/10.13031/2013.23153. DOI: https://doi.org/10.13031/2013.23153
MOTA, F. S., BEIRSDORF, M. I. C., ACOSTA, M. J. C. 1977. “Estimates of Solar Radiation in Brazil”. Agricultural Journal . DOI: https://doi.org/10.1016/0002-1571(77)90016-4. DOI: https://doi.org/10.1016/0002-1571(77)90016-4
ONS. 2020. National Operator of the Electric System. “Inventory of Technical Data on Hydroelectric Plants”. Accessed: June 2, 2020. https://l1nq.com/0spCR.
SCHAEFFER, R., SZKLO, A. S., LUCENA, A. F. P., SOUZA, R. R., BORBA, B. S. M. C., COSTA, I. V. L., PEREIRA JR, A. O., CUNHA, S. H. F. 2008. “Climate Change and Energy Security in Brazil”. Accessed June 2, 2020. https://encr.pw/cBjUf.
SEIBERT, J. 1997. “Estimation of Parameter Uncertainty in the HBV Model”. Nordic Hydrology Journal. DOI: https://doi.org/10.2166/nh.1998.15. DOI: https://doi.org/10.2166/nh.1998.15
SILVEIRA C. S., SOUZA FILHO F. A., LOPES, J. E. G., BARBOSA, P. S. F., TIEZZI, R. O. 2014. “Analysis of Flow Projections in Brazilian Basins with Hydroelectric Power Plants using Data from the IPCC-AR4 for the 21st Century”. Brazilian Journal of Water Resources. DOI: https://doi.org/10.21168/rbrh.v19n4.p59-71. DOI: https://doi.org/10.21168/rbrh.v19n4.p59-71
SILVEIRA, C. S., SOUZA FILHO, F. A., MARTINS, E. S. P. R., OLIVEIRA, J. L., COSTA, A. C., NOBREGA, M. T., SOUZA, S. A., SILVA, R. F. V. 2016. “Climate Change in the São Francisco River Basin: Analysis of Precipitation and Temperature”. Brazilian Journal of Water Resources. DOI: https://doi.org/10.21168/rbrh.v21n2.p416-428. DOI: https://doi.org/10.21168/rbrh.v21n2.p416-428
THORNTHWAITE, C. W. 1948. “An Approach Toward a Rational Classification of Climate”. Geographycal Review. DOI: https://doi.org/10.2307/210739. DOI: https://doi.org/10.2307/210739
TIBA, C., REIS, R., COSTA, J. C. E., ABREU, J. F., AMONI, M., GUIMARAES, D. P., PORTO, M. A. D. 2014. “On The Development of Spatial/Temporal Solar Radiation Maps: A Minas Gerais (Brazilian) Case Study”. Journal of Geographic Information System. DOI: https://doi.org/10.4236/jgis.2014.63024. DOI: https://doi.org/10.4236/jgis.2014.63024
TURNER, S. W. D., HEJAZI, M., KIM, S. H., CLARKE, L., EDMONDS, J. 2017. “Climate Impacts on Hydropower and Consequences for Global Electricity Supply Investment Needs”. Energy. DOI: https://doi.org/10.1016/j.energy.2017.11.089. DOI: https://doi.org/10.1016/j.energy.2017.11.089
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence

Ce travail est disponible sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.

































