COVID-19, COMPLICAÇÕES TROMBÓTICAS E FÁRMACOS ANTICOAGULANTES: UMA VISÃO GERAL E PERSPECTIVAS FARMACOLÓGICAS

Autores

  • LUCAS ALIGHIERI NEVES COSTA BATISTA Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL https://orcid.org/0000-0001-5587-4184
  • Hugo Alexandre Oliveira Rocha Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL https://orcid.org/0000-0003-2252-1221

DOI:

https://doi.org/10.15628/holos.2021.11808

Palavras-chave:

Corona vírus, SARS-CoV-2, trombose venosa, microangiopatia, heparina

Resumo

Uma nova doença infeciosa causada pelo novo coronavírus, a COVID-19, surgiu na China no final de 2019 e já em março de 2020 foi classificada como uma pandemia. O principal sítio de infecção do novo coronavírus, o SARS-CoV-2 sãos os pulmões, nos quais causa uma síndrome respiratória aguda (ARDS) que compromete a função pulmonar e pode causar a morte. Diversos estudos demonstram correlação entre alterações em parâmetros da coagulação e maior taxa de mortalidade na COVID-19. A infecção pelo SARS-CoV-2 favorece a formação de trombos em várias regiões do corpo, os quais contribuem para o deterioramento das funções vitais do paciente. Duas prováveis causas da hipercoagubilidade são: a hiper inflamação causada pela infecção viral, a qual induz a liberação de moléculas pro-trombóticas, e o tropismo viral por células endoteliais, o que compromete a integridade endotelial e a homeostasia primária. O tratamento profilático com anticoagulantes melhora o prognostico e mortalidade. A heparina de baixo peso molecular é o principal anticoagulante utilizado no tratamento antitrombótico profilático da COVID-19. Entretanto vale salientar que existem problemas quanto ao uso da heparina como: limite de disponibilidade e riscos de causar sangramentos e/ou trombocitopenia induzida por heparina. Esses problemas reforçam a necessidade de substitutos para a heparina.

Downloads

Não há dados estatísticos.

Biografia do Autor

LUCAS ALIGHIERI NEVES COSTA BATISTA, Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL

Biomédico, mestre em Bioquímica, doutorando em Ciências da Saúde- UFRN

Hugo Alexandre Oliveira Rocha, Universidade Federal do Rio Grande do Norte Departamento de Bioquímica Laboratório de Biotecnologia de Polímeros Naturais - BIOPOL

Formado em Farmácia pela UFRN, mestre em Biologia Molecular e doutor em Ciências, ambos obtidos na UNIFESP. Atua na área de produtos naturais, principalmente na área de extração, purificação, caracterização estrutural e aplicações farmacológicas de polissacarídeos

Referências

Al-Horani, R. A. (2020). Potential Therapeutic Roles for Direct Factor Xa Inhibitors in Coronavirus Infections. American Journal of Cardiovascular Drugs, 20(6), 525–533. https://doi.org/10.1007/s40256-020-00438-6

Al-Samkari, H., Karp Leaf, R. S., Dzik, W. H., Carlson, J. C., Fogerty, A. E., Waheed, A., … Rosovsky, R. P. (2020). COVID and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV2 Infection. Blood. https://doi.org/10.1182/blood.2020006520

Alban, S. (2008). Pharmacological Strategies for Inhibition of Thrombin Activity. Current Pharmaceutical Design, 14(12), 1152–1175. https://doi.org/10.2174/138161208784246135

Arnold, D. M., Patriquin, C. J., & Nazy, I. (2017). Thrombotic microangiopathies: a general approach to diagnosis and management. Canadian Medical Association Journal, 189(4), E153–E159. https://doi.org/10.1503/cmaj.160142

Artifoni, M., Danic, G., Gautier, G., Gicquel, P., Boutoille, D., Raffi, F., … Lecomte, R. (2020). Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. Journal of Thrombosis and Thrombolysis, 50(1), 211–216. https://doi.org/10.1007/s11239-020-02146-z

Bansal, A., Singh, A. D., Jain, V., Aggarwal, M., Gupta, S., Padappayil, R. P., … Mian, A. (2020). A Systematic Review and Meta-analysis of D-Dimer Levels in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19). MedRxiv, 2020.06.24.20139600. https://doi.org/10.1101/2020.06.24.20139600

Bautista-Vargas, M., Bonilla-Abadía, F., & Cañas, C. A. (2020). Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. Journal of Thrombosis and Thrombolysis, (0123456789). https://doi.org/10.1007/s11239-020-02172-x

Becker, R. C. (2020). COVID-19 update: Covid-19-associated coagulopathy. Journal of Thrombosis and Thrombolysis, 50(1), 54–67. https://doi.org/10.1007/s11239-020-02134-3

Björck, F., Renlund, H., Lip, G. Y. H., Wester, P., Svensson, P. J., & Själander, A. (2016). Outcomes in a warfarin-treated population with atrial fibrillation. JAMA Cardiology, 1(2), 172–180. https://doi.org/10.1001/jamacardio.2016.0199

Blann, A. D., & Lip, G. Y. H. (2006). Clinical review Venous thromboembolism. British Medical Journal, 332, 215–219. https://doi.org/doi: http://dx.doi.org/10.1136/bmj.332.7535.215

Cai, Z., Greene, M. I., Zhu, Z., & Zhang, H. (2020). Structural Features and PF4 Functions that Occur in Heparin-Induced Thrombocytopenia (HIT) Complicated by COVID-19. Antibodies, 9(4), 52. https://doi.org/10.3390/antib9040052

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., … Ning, Q. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. Journal of Clinical Investigation, 130(5), 2620–2629. https://doi.org/10.1172/JCI137244

Chen, L., Xu, R., Yu, H., Chang, Q., & Zhong, J. (2015). The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. International Journal of Hypertension, 2015, 1–6. https://doi.org/10.1155/2015/896861

Cheng, H., Wang, Y., & Wang, G. Q. (2020). Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. Journal of Medical Virology, (March), 726–730. https://doi.org/10.1002/jmv.25785

Christersson, C., Wallentin, L., Andersson, U., Alexander, J. H., Alings, M., De Caterina, R., … Siegbahn, A. (2019). Effect of apixaban compared with warfarin on coagulation markers in atrial fibrillation. Heart, 105(3), 235–242. https://doi.org/10.1136/heartjnl-2018-313351

Clausen, T. M., Sandoval, D. R., Spliid, C. B., Pihl, J., Perrett, H. R., Painter, C. D., … Esko, J. D. (2020). SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 183(4), 1043-1057.e15. https://doi.org/10.1016/j.cell.2020.09.033

Coleman, C. I., Bunz, T. J., & Turpie, A. G. G. (2017). Effectiveness and safety of rivaroxaban versus warfarin for treatment and prevention of recurrence of venous thromboembolism. Thrombosis and Haemostasis, 117(10), 1841–1847. https://doi.org/10.1160/TH17-03-0210

Costantino, G., Ceriani, E., Rusconi, A. M., Podda, G. M., Montano, N., Duca, P., … Casazza, G. (2012). Bleeding Risk during Treatment of Acute Thrombotic Events with Subcutaneous LMWH Compared to Intravenous Unfractionated Heparin; A Systematic Review. PLoS ONE, 7(9), 1–10. https://doi.org/10.1371/journal.pone.0044553

Cui, S., Chen, S., Li, X., Liu, S., & Wang, F. (2020). Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, (April), 1421–1424. https://doi.org/10.1111/jth.14830

Daviet, F., Guervilly, C., Baldesi, O., Bernard-Guervilly, F., Pilarczyk, E., Genin, A., … Camoin-Jau, L. (2020). Heparin-Induced Thrombocytopenia in Severe COVID-19. Circulation, 142(19), 1875–1877. https://doi.org/10.1161/CIRCULATIONAHA.120.049015

Demelo-Rodríguez, P., Cervilla-Muñoz, E., Ordieres-Ortega, L., Parra-Virto, A., Toledano-Macías, M., Toledo-Samaniego, N., … Galeano-Valle, F. (2020). Incidence of asymptomatic deep vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thrombosis Research, 192, 23–26. https://doi.org/10.1016/j.thromres.2020.05.018

Devreese, K. M. J., Linskens, E. A., Benoit, D., & Peperstraete, H. (2020). Antiphospholipid antibodies in patients with COVID?19: A relevant observation? Journal of Thrombosis and Haemostasis, 18(9), 2191–2201. https://doi.org/10.1111/jth.14994

Dolhnikoff, M., Duarte-Neto, A. N., de Almeida Monteiro, R. A., da Silva, L. F. F., de Oliveira, E. P., Saldiva, P. H. N., … Negri, E. M. (2020). Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. Journal of Thrombosis and Haemostasis, 18(6), 1517–1519. https://doi.org/10.1111/jth.14844

Dragonetti, D., Guarini, G., & Pizzuti, M. (2020). Detection of anti-heparin-PF4 complex antibodies in COVID-19 patients on heparin therapy. Blood Transfusion, 18(4), 328. https://doi.org/10.2450/2020.0164-20

Esmon, C. T. (2005). The interactions between inflammation and coagulation. British Journal of Haematology, 131(4), 417–430. https://doi.org/10.1111/j.1365-2141.2005.05753.x

Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., … Gallagher, P. E. (2005). Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockers on Cardiac Angiotensin-Converting Enzyme 2. Circulation, 111(20), 2605–2610. https://doi.org/10.1161/CIRCULATIONAHA.104.510461

Focosi, D., Tuccori, M., & Maggi, F. (2020). ACE Inhibitors and AT1R Blockers for COVID-2019: Friends or Foes ? Preprints, (April). https://doi.org/10.20944/PREPRINTS202004.0151.V2

Franco, R. F. (2001). Fisiologia da coagulação. Medicina, 3(34), 229–237.

Gando, S., Levi, M., & Toh, C. H. (2016). Disseminated intravascular coagulation. Nature Reviews Disease Primers, 2(Dic), 1–16. https://doi.org/10.1038/nrdp.2016.37

Garg, A., Goyal, S., & Patel, P. (2020). A Case of COVID-19 Infection With Delayed Thromboembolic Complication on Warfarin. Cureus. https://doi.org/10.7759/cureus.8847

Gavriilaki, E., Anyfanti, P., Gavriilaki, M., Lazaridis, A., Douma, S., & Gkaliagkousi, E. (2020). Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Current Hypertension Reports, 22(9). https://doi.org/10.1007/s11906-020-01078-6

Greinacher, A., Janssens, U., Berg, G., Bo?ck, M., Kwasny, H., Kemkes-Matthes, B., … Luz, M. (1999). Lepirudin (Recombinant Hirudin) for Parenteral Anticoagulation in Patients With Heparin-Induced Thrombocytopenia. Circulation, 100(6), 587–593. https://doi.org/10.1161/01.CIR.100.6.587

Guarner, J. (2020). Three Emerging Coronaviruses in Two Decades. American Journal of Clinical Pathology, 153(4), 420–421. https://doi.org/10.1093/ajcp/aqaa029

Harzallah, I., Debliquis, A., & Drénou, B. (2020). Lupus anticoagulant is frequent in patients with Covid?19. Journal of Thrombosis and Haemostasis, 18(8), 2064–2065. https://doi.org/10.1111/jth.14867

Hoffbrand, A. V, & Moss, P. A. H. (2017). Fundamentos em Hematologia de Hoffbrand (7a edição). Porto Alegre: Artmed Editora.

Hottz, E. D., Azevedo-Quintanilha, I. G., Palhinha, L., Teixeira, L., Barreto, E. A., Pão, C. R. R., … Bozza, P. T. (2020). Platelet activation and platelet-monocyte aggregates formation trigger tissue factor expression in severe COVID-19 patients. Blood, 136(11), 29–35. https://doi.org/10.1182/blood.2020007252

Iba, T., Levy, J. H., Warkentin, T. E., Thachil, J., van der Poll, T., & Levi, M. (2019). Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. Journal of Thrombosis and Haemostasis, 17(11), 1989–1994. https://doi.org/10.1111/jth.14578

Ikezoe, T. (2015). Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. Journal of Intensive Care, 3(1), 1–8. https://doi.org/10.1186/s40560-014-0050-7

Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., … Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112–116. https://doi.org/10.1038/nature03712

Inciardi, R. M., Adamo, M., Lupi, L., Cani, D. S., Di Pasquale, M., Tomasoni, D., … Metra, M. (2020). Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. European Heart Journal, 41(19), 1821–1829. https://doi.org/10.1093/eurheartj/ehaa388

Ito, T., Thachil, J., Asakura, H., Levy, J. H., & Iba, T. (2019). Thrombomodulin in disseminated intravascular coagulation and other critical conditions - A multi-faceted anticoagulant protein with therapeutic potential. Critical Care, 23(1), 1–11. https://doi.org/10.1186/s13054-019-2552-0

Iturbe-Hernandez, T., García de Guadiana Romualdo, L., Gil Ortega, I., Martínez Francés, A., Meca Birlanga, O., & Cerezo-Manchado, J. J. (2020). Dabigatran, the oral anticoagulant of choice at discharge in patients with non-valvular atrial fibrillation and COVID-19 infection: the ANIBAL* protocol. Drugs in Context, 9, 1–12. https://doi.org/10.7573/dic.2020-8-3

Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. Journal of Virology, 93(6). https://doi.org/10.1128/JVI.01815-18

Johnson, E. D., Schell, J. C., & Rodgers, G. M. (2019). The D?dimer assay. American Journal of Hematology, ajh.25482. https://doi.org/10.1002/ajh.25482

Jose, R. J., & Manuel, A. (2020). COVID-19 cytokine storm: the interplay between inflammation and coagulation. The Lancet Respiratory Medicine, 8(6), e46–e47. https://doi.org/10.1016/S2213-2600(20)30216-2

Jun, M., Lix, L. M., Durand, M., Dahl, M., Paterson, J. M., Dormuth, C. R., … Hemmelgarn, B. R. (2017). Comparative safety of direct oral anticoagulants and warfarin in venous thromboembolism: Multicentre, population based, observational study. The BMJ, 359. https://doi.org/10.1136/bmj.j4323

Katopodis, P., Anikin, V., Randeva, H., Spandidos, D., Chatha, K., Kyrou, I., & Karteris, E. (2020). Pan?cancer analysis of transmembrane protease serine 2 and cathepsin L that mediate cellular SARS?CoV?2 infection leading to COVID-19. International Journal of Oncology, 57(2), 533–539. https://doi.org/10.3892/ijo.2020.5071

Kearon, C., Akl, E. A., Comerota, A. J., Prandoni, P., Bounameaux, H., Goldhaber, S. Z., … Kahn, S. R. (2012). Antithrombotic Therapy for VTE Disease. Chest, 141(2), e419S-e496S. https://doi.org/10.1378/chest.11-2301

Keshari, R. S., Silasi, R., Popescu, N. I., Georgescu, C., Chaaban, H., Lupu, C., … Lupu, F. (2020). Fondaparinux pentasaccharide reduces sepsis coagulopathy and promotes survival in the baboon model of Escherichia coli sepsis. Journal of Thrombosis and Haemostasis, 18(1), 180–190. https://doi.org/10.1111/jth.14642

Klok, F. A., Kruip, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., … Endeman, H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research, 191(5), 145–147. https://doi.org/10.1016/j.thromres.2020.04.013

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., … Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11(8), 875–879. https://doi.org/10.1038/nm1267

Kumar, P., Mediwake, R., & Rhead, C. (2020). A matter of time: duration and choice of venous thromboprophylaxis in patients diagnosed with COVID-19. British Journal of Hospital Medicine, 81(5), 1–2. https://doi.org/10.12968/hmed.2020.0210

Lanza, K., Perez, L. G., Costa, L. B., Cordeiro, T. M., Palmeira, V. A., Ribeiro, V. T., & Simões E Silva, A. C. (2020). Covid-19: the renin-angiotensin system imbalance hypothesis. Clinical Science, 134(11), 1259–1264. https://doi.org/10.1042/CS20200492

Lee, C. J., & Ansell, J. E. (2011). Direct thrombin inhibitors. British Journal of Clinical Pharmacology, 72(4), 581–592. https://doi.org/10.1111/j.1365-2125.2011.03916.x

Levi, M., & Thachil, J. (2020). Coronavirus Disease 2019 Coagulopathy: Disseminated Intravascular Coagulation and Thrombotic Microangiopathy—Either, Neither, or Both. Seminars in Thrombosis and Hemostasis, 1(212). https://doi.org/10.1055/s-0040-1712156

Levy, J. H., Szlam, F., Wolberg, A. S., & Winkler, A. (2014). Clinical Use of the Activated Partial Thromboplastin Time and Prothrombin Time for Screening. Clinics in Laboratory Medicine, 34(3), 453–477. https://doi.org/10.1016/j.cll.2014.06.005

Li, S. ren, Tang, Z. jian, Li, Z. han, & Liu, X. (2020). Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. European Journal of Clinical Microbiology and Infectious Diseases, 1021–1026. https://doi.org/10.1007/s10096-020-03883-y

Lillicrap, D. (2020). Disseminated intravascular coagulation in patients with 2019?nCoV pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 786–787. https://doi.org/10.1111/jth.14781

Lindahl, U., Couchman, J., Kimata, K., & Esko, J. D. (2015). Proteoglycans and Sulfated Glycosaminoglycans (3rd ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY).

Lip, G. Y. H., Lowe, G. D. O., Rumley, A., & Dunn, F. G. (1995). Increased markers of thrombogenesis in chronic atrial fibrillation: Effects of warfarin treatment. Heart, 73(6), 527–533. https://doi.org/10.1136/hrt.73.6.527

Luo, P., Liu, Y., Qiu, L., Liu, X., Liu, D., & Li, J. (2020). Tocilizumab treatment in COVID-19: A single center experience. Journal of Medical Virology, (March), 814–818. https://doi.org/10.1002/jmv.25801

Maldonado, E., Tao, D., & Mackey, K. (2020). Antithrombotic Therapies in COVID-19 Disease: a Systematic Review. Journal of General Internal Medicine, (Cdc). https://doi.org/10.1007/s11606-020-05906-y

Mammen, E. F. (1998). Antithrombin: Its physiological importance and role in DIC. Seminars in Thrombosis and Hemostasis, 24(1), 19–25. https://doi.org/10.1055/s-2007-995819

Martel, N., Lee, J., & Wells, P. S. (2005). Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood, 106(8), 2710–2715. https://doi.org/10.1182/blood-2005-04-1546

McCarthy, C. P., Vaduganathan, M., Solomon, E., Sakhuja, R., Piazza, G., Bhatt, D. L., … Patel, N. K. (2020). Running thin: implications of a heparin shortage. The Lancet, 395(10223), 534–536. https://doi.org/10.1016/S0140-6736(19)33135-6

McGlynn, F., McGrath, J., Varghese, C., Ryan, B., McHugh, J., Fahy, A., & Enright, H. (2020). Argatroban for therapeutic anticoagulation for heparin resistance associated with Covid-19 infection. Journal of Thrombosis and Thrombolysis. https://doi.org/10.1007/s11239-020-02251-z

Michel, N., Allespach, I., Venzke, S., Fackler, O. T., & Keppler, O. T. (2005). The nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Current Biology, 15(8), 714–723. https://doi.org/10.1016/j.cub.2005.02.058

Middeldorp, S., Coppens, M., Haaps, T. F., Foppen, M., Vlaar, A. P., Müller, M. C. A., … Es, N. (2020). Incidence of venous thromboembolism in hospitalized patients with COVID?19. Journal of Thrombosis and Haemostasis, 18(8), 1995–2002. https://doi.org/10.1111/jth.14888

Miesbach, W., & Makris, M. (2020). COVID-19: Coagulopathy, Risk of Thrombosis, and the Rationale for Anticoagulation. Clinical and Applied Thrombosis/Hemostasis, 26. https://doi.org/10.1177/1076029620938149

Monteleone, G., Sarzi-Puttini, P. C., & Ardizzone, S. (2020). Preventing COVID-19-induced pneumonia with anticytokine therapy. The Lancet Rheumatology, 2(5), e255–e256. https://doi.org/10.1016/S2665-9913(20)30092-8

Nader, H. B., Chavante, S. F., Dos-Santos, E. A., Oliveira, F. W., De-Paiva, J. F., Jerônimo, S. M. B., … Dietrich, C. P. (1999). Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Brazilian Journal of Medical and Biological Research, 32(5), 529–538. https://doi.org/10.1590/S0100-879X1999000500005

Nader, H., Lopes, C., Rocha, H., Santos, E., & Dietrich, C. (2004). Heparins and Heparinoids: Occurrence, Structure and Mechanism of Antithrombotic and Hemorrhagic Activities. Current Pharmaceutical Design, 10(9), 951–966. https://doi.org/10.2174/1381612043452758

Nagashima, S., Mendes, M. C., Camargo Martins, A. P., Borges, N. H., Godoy, T. M., Miggiolaro, A. F. R. dos S., … de Noronha, L. (2020). Endothelial Dysfunction and Thrombosis in Patients With COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, (October), 1–4. https://doi.org/10.1161/atvbaha.120.314860

Nam, D., Nunley, R. M., Johnson, S. R., Keeney, J. A., Clohisy, J. C., & Barrack, R. L. (2016). The Effectiveness of a Risk Stratification Protocol for Thromboembolism Prophylaxis After Hip and Knee Arthroplasty. Journal of Arthroplasty, 31(6), 1299–1306. https://doi.org/10.1016/j.arth.2015.12.007

Nasiripour, S., Saif, M., Farasatinasab, M., Emami, S., Amouzegar, A., Basi, A., & Mokhtari, M. (2019). Dabigatran as a Treatment Option for Heparin?Induced Thrombocytopenia. The Journal of Clinical Pharmacology, 59(1), 107–111. https://doi.org/10.1002/jcph.1300

Neumann, I., Rada, G., Claro, J. C., Carrasco-Labra, A., Thorlund, K., Akl, E. A., … Guyatt, G. H. (2012). Oral direct factor Xa inhibitors versus low-molecular-weight heparin to prevent venous thromboembolism in patients undergoing total hip or knee replacement a systematic review and meta-analysis. Annals of Internal Medicine, 156(10), 710–719. https://doi.org/10.7326/0003-4819-156-10-201205150-00421

Olson, S. T., & Bjork, I. (1994). Regulation of thrombin activity by antithrombin and heparin. Seminars in Thrombosis and Hemostasis, 20(4), 373–409. https://doi.org/10.1055/s-2007-1001928

Onder, G., Rezza, G., & Brusaferro, S. (2020). Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. https://doi.org/10.1001/jama.2020.4683

Papageorgiou, C., Jourdi, G., Adjambri, E., Walborn, A., Patel, P., Fareed, J., … Gerotziafas, G. T. (2018). Disseminated Intravascular Coagulation: An Update on Pathogenesis, Diagnosis, and Therapeutic Strategies. Clinical and Applied Thrombosis/Hemostasis, 24(9_suppl), 8S-28S. https://doi.org/10.1177/1076029618806424

Patell, R., Khan, A. M., Bogue, T., Merrill, M., Koshy, A., Bindal, P., … Zwicker, J. I. (2020). Heparin induced thrombocytopenia antibodies in Covid?19. American Journal of Hematology, 95(10). https://doi.org/10.1002/ajh.25935

Patriarcheas, V., Pikoulas, A., Kostis, M., Charpidou, A., & Dimakakos, E. (2020). Heparin-induced Thrombocytopenia: Pathophysiology, Diagnosis and Management. Cureus, 12(3). https://doi.org/10.7759/cureus.7385

Perzborn, E., Roehrig, S., Straub, A., Kubitza, D., & Misselwitz, F. (2011). The discovery and development of rivaroxaban, an oral, direct factor Xa inhibitor. Nature Reviews Drug Discovery, 10(1), 61–75. https://doi.org/10.1038/nrd3185

Petros, S. (2008). Lepirudin in the management of patients with heparin-induced thrombocytopenia. Biologics: Targets and Therapy, 2(3), 481–490. https://doi.org/10.2147/btt.s3415

Phillippe, H. M. (2017). Overview of venous thromboembolism. The American Journal of Managed Care, 23(20), S376–S382. https://doi.org/10.4103/0019-5049.144643.FIGURE

Prandoni, P., Cattelan, A. M., Carrozzi, L., Leone, L., Filippi, L., De Gaudenzi, E., … Pesavento, R. (2020). The hazard of fondaparinux in non-critically ill patients with COVID-19: Retrospective controlled study versus enoxaparin. Thrombosis Research, 196, 395–397. https://doi.org/10.1016/j.thromres.2020.09.024

Riker, R. R., May, T. L., Fraser, G. L., Gagnon, D. J., Bandara, M., Zemrak, W. R., & Seder, D. B. (2020). Heparin?induced thrombocytopenia with thrombosis in COVID?19 adult respiratory distress syndrome. Research and Practice in Thrombosis and Haemostasis, 4(5), 936–941. https://doi.org/10.1002/rth2.12390

Romanelli, R. J., Nolting, L., Dolginsky, M., Kym, E., & Orrico, K. B. (2016). Dabigatran Versus Warfarin for Atrial Fibrillation in Real-World Clinical Practice: A Systematic Review and Meta-Analysis. Circulation: Cardiovascular Quality and Outcomes, 9(2), 126–134. https://doi.org/10.1161/CIRCOUTCOMES.115.002369

Russo, V., Cardillo, G., Viggiano, G. V., Mangiacapra, S., Cavalli, A., Fontanella, A., … Di Micco, P. (2020). Fondaparinux Use in Patients With COVID-19: A Preliminary Multicenter Real-World Experience. Journal of Cardiovascular Pharmacology, 76(4), 369–371. https://doi.org/10.1097/FJC.0000000000000893

Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (actemra). Human Vaccines and Immunotherapeutics, 13(9), 1972–1988. https://doi.org/10.1080/21645515.2017.1316909

Shields, L. B. E., Fowler, P., Siemens, D. M., Lorenz, D. J., Wilson, K. C., Hester, S. T., & Honaker, J. T. (2019). Standardized warfarin monitoring decreases adverse drug reactions. BMC Family Practice, 20(1), 1–7. https://doi.org/10.1186/s12875-019-1041-5

Sikara, M. P., Grika, E. P., & Vlachoyiannopoulos, P. P. (2011). Pathogenic Mechanisms of Thrombosis in Antiphospholipid Syndrome (APS). In Thrombophilia. https://doi.org/10.5772/25522

Song, J.-C., Wang, G., Zhang, W., Zhang, Y., Li, W.-Q., Zhou, Z., … Chinese Society on Thrombosis and Haemostasis. (2020). Chinese expert consensus on diagnosis and treatment of subacute combined degeneration. Chinese Journal of Neurology, 53(4), 269–273. https://doi.org/10.3760/cma.j.cn113694-20191101-00677

Song, W.-C., & FitzGerald, G. A. (2020). COVID-19, microangiopathy, hemostatic activation, and complement. Journal of Clinical Investigation. https://doi.org/10.1172/JCI140183

Sun, Z., Lan, X., Li, S., Zhao, H., Tang, Z., & Xi, Y. (2017). Comparisons of argatroban to lepirudin and bivalirudin in the treatment of heparin-induced thrombocytopenia: a systematic review and meta-analysis. International Journal of Hematology, 106(4), 476–483. https://doi.org/10.1007/s12185-017-2271-8

Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis, (March), 1094–1099. https://doi.org/10.1111/jth.14817

Tang, N., Li, D., Wang, X., & Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis, 18(4), 844–847. https://doi.org/10.1111/jth.14768

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8

Tulinsky, A. (1996). Molecular interactions of thrombin. Seminars in Thrombosis and Hemostasis, 22(2), 117–124. https://doi.org/10.1055/s-2007-998998

Turshudzhyan, A. (2020). Anticoagulation Options for Coronavirus Disease 2019 (COVID-19)-Induced Coagulopathy. Cureus, 2019(5). https://doi.org/10.7759/cureus.8150

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., … Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. The Lancet, 395(10234), 1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5

Viggiano, G. V., Cardillo, G., Russo, V., Mangiacapra, S., Cavalli, A., Pesci, C., … Micco, P. Di. (2020). FONDENOXAVID: A Retrospective Analysis on Utility of Thromboprophylaxis with Fondaparinux and Enoxaparin in Patients with COVID19 Infection in Italy. (May). https://doi.org/10.20944/PREPRINTS202005.0309.V1

Vilanova, E., Tovar, A. M. F., & Mourão, P. A. S. (2019). Imminent risk of a global shortage of heparin caused by the African Swine Fever afflicting the Chinese pig herd. Journal of Thrombosis and Haemostasis, 17(2), 254–256. https://doi.org/10.1111/jth.14372

Wada, H., Thachil, J., Di Nisio, M., Mathew, P., Kurosawa, S., Gando, S., … Toh, C. (2013). Guidance for diagnosis and treatment of disseminated intravascular coagulation from harmonization of the recommendations from three guidelines. Journal of Thrombosis and Haemostasis, 11(4), 761–767. https://doi.org/10.1111/jth.12155

Wang, K., Gheblawi, M., & Oudit, G. Y. (2020). Angiotensin Converting Enzyme 2: A Double-Edged Sword. Circulation, 1–8. https://doi.org/10.1161/circulationaha.120.047049

Warkentin, T. E. (2010). Fondaparinux: Does it cause HIT? can it treat HIT? Expert Review of Hematology, 3(5), 567–581. https://doi.org/10.1586/ehm.10.54

Warkentin, T., Greinacher, A., & Koster, A. (2008). Bivalirudin. Thrombosis and Haemostasis, 99(11), 830–839. https://doi.org/10.1160/TH07-10-0644

White, D., MacDonald, S., Bull, T., Hayman, M., de Monteverde-Robb, R., Sapsford, D., … Thomas, W. (2020). Heparin resistance in COVID-19 patients in the intensive care unit. Journal of Thrombosis and Thrombolysis, 50(2), 287–291. https://doi.org/10.1007/s11239-020-02145-0

Whitlon, D. S., Sadowski, J. A., & Suttie, J. W. (1978). Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry, 17(8), 1371–1377. https://doi.org/10.1021/bi00601a003

World Health Organization. (2020a). Coronavirus disease 2019 Situation Report 148 16th June 2020. World Health Organization, 2019(June). https://doi.org/10.30895/2312-7821-2020-8-1-3-8

World Health Organization. (2020b). Coronavirus disease 2019 Situation Report 51 11th March 2020. World Health Organization, 2019(March), 2633. https://doi.org/10.1001/jama.2020.2633

World Health Organization. (2020c). Novel Coronavirus (2019-nCoV) Situation Report - 1. WHO Bulletin, (JANUARY), 1–7.

World Health Organization. (2020d). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). The WHO-China Joint Mission on Coronavirus Disease 2019, 1(February), 40.

Xiong, M., Liang, X., & Wei, Y. D. (2020). Changes in Blood Coagulation in Patients with Severe Coronavirus Disease 2019 (COVID-19): a Meta-Analysis. British Journal of Haematology, 2019, 2019–2021. https://doi.org/10.1111/bjh.16725

Xu, Xiaoling, Han, M., Li, T., Sun, W., Wang, D., Fu, B., … Wei, H. (2020). Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10970–10975. https://doi.org/10.1073/pnas.2005615117

Xu, Xintian, Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., … Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China Life Sciences, 63(3), 457–460. https://doi.org/10.1007/s11427-020-1637-5

Yang, M. (2020). Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3527420

Ye, Z., Zhang, Y., Wang, Y., Huang, Z., & Song, B. (2020). Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. European Radiology, 2019(37). https://doi.org/10.1007/s00330-020-06801-0

Zhang, A., Leng, Y., Zhang, Y., Wu, K., Ji, Y., Lei, S., & Xia, Z. (2020). Meta-Analysis of coagulation parameters associated with disease severity and poor prognosis of COVID-19. International Journal of Infectious Diseases, 112490. https://doi.org/10.1016/j.ijid.2020.09.021

Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9

Zhang, Yan, Cao, W., Jiang, W., Xiao, M., Li, Y., Tang, N., … Zhu, T. (2020). Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. Journal of Thrombosis and Thrombolysis, (0123456789). https://doi.org/10.1007/s11239-020-02182-9

Zhang, Yan, Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., … Zhang, S. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. New England Journal of Medicine, 382(17), e38. https://doi.org/10.1056/NEJMc2007575

Zhang, Yiran, Zhang, M., Tan, L., Pan, N., & Zhang, L. (2019). Chapter Three - The clinical use of Fondaparinux: A synthetic heparin pentasaccharide. In L. B. T.-P. in M. B. and T. S. Zhang (Ed.), Glycans and Glycosaminoglycans as Clinical Biomarkers and Therapeutics - Part B (Vol. 163, pp. 41–53). https://doi.org/https://doi.org/10.1016/bs.pmbts.2019.02.004

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., … Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3

Downloads

Publicado

06/08/2021

Como Citar

BATISTA, L. A. N. C., & Rocha, H. A. O. (2021). COVID-19, COMPLICAÇÕES TROMBÓTICAS E FÁRMACOS ANTICOAGULANTES: UMA VISÃO GERAL E PERSPECTIVAS FARMACOLÓGICAS. HOLOS, 4, 1–33. https://doi.org/10.15628/holos.2021.11808

Edição

Seção

Dossiê COVID-19 e o mundo em tempos de pandemia

Artigos mais lidos pelo mesmo(s) autor(es)

Artigos Semelhantes

<< < 1 2 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.