CONTRIBUIÇÃO DO SENSORIAMENTO REMOTO PARA O ESTUDO DOS MANGUEZAIS: UMA REVISÃO BIBLIOMÉTRICA (2019-2024)
DOI:
https://doi.org/10.15628/geoconexes.2025.18706Palavras-chave:
sensoriamento remoto, índice de vegetação, manguezalResumo
O estudo destaca a importância dos manguezais como ecossistemas costeiros vitais, ressaltando sua distribuição global e relevância na mitigação das mudanças climáticas, proteção costeira e prestação de serviços socioeconômicos. No entanto, eles enfrentam ameaças significativas devido à atividade humana, como desmatamento e urbanização descontrolada. O Sensoriamento Remoto, especialmente por meio de índices de vegetação, é uma ferramenta essencial para monitorar e conservar os manguezais, fornecendo dados valiosos para análise e tomada de decisão. A pesquisa revisa a literatura existente sobre o uso do Sensoriamento Remoto na análise de manguezais, destacando a importância desses índices na identificação de espécies de mangue. A análise bibliométrica identificou apenas 32 estudos brasileiros sobre o tema, no período analisado, apesar da extensão significativa dos manguezais ao longo do litoral do país. Os índices de vegetação possuem um papel fundamental na identificação e caracterização dos manguezais, contribuindo para o monitoramento da saúde e extensão desses ecossistemas. A diversidade de índices reflete o contínuo avanço e inovação na área de Sensoriamento Remoto, destacando a importância de uma abordagem multifacetada para compreender e monitorar ecossistemas terrestres em escala global.
Referências
AIZPURU, M.; BLASCO, F. Global assessment of cover change of the mangrove forests using satellite imagery at medium to high resolution. [s. l.], 2000.
AKANNI, A.; ONWUTEAKA, J.; UWAGBAE, M.; MULWA, R.; ELEGBEDE, I. O. The Values of Mangrove Ecosystem Services in the Niger Delta Region of Nigeria. Em: THE POLITICAL ECOLOGY OF OIL AND GAS ACTIVITIES IN THE NIGERIAN AQUATIC ECOSYSTEM. [S. l.]: Elsevier, 2018. p. 387–437. DOI: 10.1016/B978-0-12-809399-3.00025-2 DOI: https://doi.org/10.1016/B978-0-12-809399-3.00025-2
AL MAMUN, M. A.; AZAD, M. A. K.; AL MAMUN, M. A.; BOYLE, M. Review of flipped learning in engineering education: Scientific mapping and research horizon. Education and Information Technologies, [s. l.], v. 27, n. 1, p. 1261–1286, 2022. DOI: 10.1007/s10639-021-10630-z DOI: https://doi.org/10.1007/s10639-021-10630-z
ALONGI, D. M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Sci, [s. l.], v. 2, n. 3, p. 67, 2020. DOI: 10.3390/sci2030067 DOI: https://doi.org/10.3390/sci2030067
AWTY-CARROLL, K.; BUNTING, P.; HARDY, A.; BELL, G. Using Continuous Change Detection and Classification of Landsat Data to Investigate Long-Term Mangrove Dynamics in the Sundarbans Region. Remote Sensing, [s. l.], v. 11, n. 23, p. 2833, 2019. DOI: 10.3390/rs11232833 DOI: https://doi.org/10.3390/rs11232833
BALOLOY, A. B.; BLANCO, A. C.; STA. ANA, R. R. C.; NADAOKA, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, [s. l.], v. 166, p. 95–117, 2020. DOI: 10.1016/j.isprsjprs.2020.06.001 DOI: https://doi.org/10.1016/j.isprsjprs.2020.06.001
BARBOSA, D. L. D. S.; ALMEIDA, K. D. S.; SOUSA JÚNIOR, E. L. D.; MORAIS, R. C. D. S.; IWATA, B. D. F. Padrões Espaciais e Usos da Terra em Manguezais do Delta do Parnaíba. Revista Brasileira de Geografia Física, [s. l.], v. 14, n. 7, p. 3881–3890, 2022. DOI: 10.26848/rbgf.v14.7.p3881-3890 DOI: https://doi.org/10.26848/rbgf.v14.7.p3881-3890
BEHERA, M. D.; BARNWAL, S.; PARAMANIK, S.; DAS, P.; BHATTYACHARYA, B. K.; JAGADISH, B.; ROY, P. S.; GHOSH, S. M.; BEHERA, S. K. Species-Level Classification and Mapping of a Mangrove Forest Using Random Forest—Utilisation of AVIRIS-NG and Sentinel Data. Remote Sensing, [s. l.], v. 13, n. 11, p. 2027, 2021. DOI: 10.3390/rs13112027 DOI: https://doi.org/10.3390/rs13112027
BRASIL. Lei Federal nº 12.651, de 25 de maio de 2012. Dispõe sobre o Código Florestal. 2012a. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm. Acesso em: 15 jul. 2024.
BUNTING, P.; ROSENQVIST, A.; HILARIDES, L.; LUCAS, R. M.; THOMAS, N. Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing, [s. l.], v. 14, n. 4, p. 1034, 2022. DOI: 10.3390/rs10101669 DOI: https://doi.org/10.3390/rs14041034
BUNTING, P.; ROSENQVIST, A.; LUCAS, R. M.; REBELO, L.-M.; HILARIDES, L.; THOMAS, N.; HARDY, A.; ITOH, T.; SHIMADA, M.; FINLAYSON, C. M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sensing, [s. l.], v. 10, n. 10, p. 1669, 2018. DOI: 10.3390/rs14041034 DOI: https://doi.org/10.3390/rs10101669
CABEZA, L. F.; FRAZZICA, A.; CHÀFER, M.; VÉREZ, D.; PALOMBA, V. Research trends and perspectives of thermal management of electric batteries: Bibliometric analysis. Journal of Energy Storage, [s. l.], v. 32, p. 101976, 2020. DOI: 10.1016/j.est.2020.101976 DOI: https://doi.org/10.1016/j.est.2020.101976
CAÑEDO-ARGÜELLES, M.; KEFFORD, B. J.; PISCART, C.; PRAT, N.; SCHÄFER, R. B.; SCHULZ, C.-J. Salinisation of rivers: An urgent ecological issue. Environmental Pollution, [s. l.], v. 173, p. 157–167, 2013. DOI: 10.1016/j.envpol.2012.10.011 DOI: https://doi.org/10.1016/j.envpol.2012.10.011
CAO, J.; LENG, W.; LIU, K.; LIU, L.; HE, Z.; ZHU, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sensing, [s. l.], v. 10, n. 1, p. 89, 2018. DOI: 10.3390/rs10010089 DOI: https://doi.org/10.3390/rs10010089
CAVALCANTE, J. D. C.; LIMA, A. M. M. D.; SILVA, J. C. C. D.; HOLANDA, B. S. D.; ALMEIDA, C. A. Temporal Analysis of the Mangrove Forest at the Mocajuba River Hydrographic Basin-Pará. Floresta e Ambiente, [s. l.], v. 28, n. 2, p. e20200073, 2021. DOI: 10.1590/2179-8087-floram-2020-0073 DOI: https://doi.org/10.1590/2179-8087-floram-2020-0073
CHEN, C. S.; TARDIN, A, T.; BATISTA, G. T. Índices de Vegetação e suas aplicações na agricultura. São José dos Campos, SP: Instituto Nacional de Pesquisas Espaciais, INPE, 1986. 24p. (INPE-3912- MD/030).
CORREIA, I. M. G.; SOUZA, Y. G.; SILVA, J. B. A legislação ambiental na proteção das áreas de mangue. In: Giovanni Seabra. (Org.). TERRA: objetivos do desenvolvimento sustentável no mundo pandêmico. 1ed. ITUIUTABA-MG: BARLAVENTO, 2023, v. 1, p. 436-447. DOI: 10.54400/978-65-87563-40-4 DOI: https://doi.org/10.54400/978-65-87563-40-4
DE JONG, S. M.; SHEN, Y.; DE VRIES, J.; BIJNAAR, G.; VAN MAANEN, B.; AUGUSTINUS, P.; VERWEIJ, P. Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation, [s. l.], v. 97, p. 102293, 2021. DOI: 10.1016/j.jag.2020.102293 DOI: https://doi.org/10.1016/j.jag.2020.102293
DINIZ, C.; CORTINHAS, L.; NERINO, G.; RODRIGUES, J.; SADECK, L.; ADAMI, M.; SOUZA-FILHO, P. W. M. Brazilian Mangrove Status: Three Decades of Satellite Data Analysis. Remote Sensing, [s. l.], v. 11, n. 7, p. 808, 2019. DOI: 10.3390/rs11070808 DOI: https://doi.org/10.3390/rs11070808
ERFANIFARD, Y.; LOTFI NASIRABAD, M.; STEREŃCZAK, K. Assessment of Iran’s Mangrove Forest Dynamics (1990–2020) Using Landsat Time Series. Remote Sensing, [s. l.], v. 14, n. 19, p. 4912, 2022. DOI: 10.3390/rs14194912 DOI: https://doi.org/10.3390/rs14194912
FAO (org.). Global forest resources assessment 2015: how are the world’s forests changing? Second editioned. Rome: Food and Agriculture Organization of the United Nations, 2016.
FAO; FAO (org.). Mangrove forest management guidelines. Rome: Food and Agriculture Organization of the United Nations, 1994. (FAO forestry paper, v. 117).
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (org.). The world’s mangroves, 1980-2005: a thematic study in the framework of the Global Forest Resources Assessment 2005. Rome: Food and Agriculture Organization of the United Nations, 2007. (FAO forestry paper, v. 153).
FREEMAN, K. W.; RAUN, W. R.; JOHNSON, G. V.; MULLEN, R. W.; STONE, M. L.; SOLIE, J. B. Late-season Prediction Of Wheat Grain Yield And Grain Protein. Communications in Soil Science and Plant Analysis, [s. l.], v. 34, n. 13–14, p. 1837–1852, 2003. DOI: 10.1081/CSS-120023219 DOI: https://doi.org/10.1081/CSS-120023219
GIARDINO, C.; BRANDO, V. E.; GEGE, P.; PINNEL, N.; HOCHBERG, E.; KNAEPS, E.; REUSEN, I.; DOERFFER, R.; BRESCIANI, M.; BRAGA, F.; FOERSTER, S.; CHAMPOLLION, N.; DEKKER, A. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and Perspectives. Surveys in Geophysics, [s. l.], v. 40, n. 3, p. 401–429, 2019. DOI: 10.1007/s10712-018-9476-0 DOI: https://doi.org/10.1007/s10712-018-9476-0
GIRI, C.; OCHIENG, E.; TIESZEN, L. L.; ZHU, Z.; SINGH, A.; LOVELAND, T.; MASEK, J.; DUKE, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, [s. l.], v. 20, n. 1, p. 154–159, 2011. DOI: 10.1111/j.1466-8238.2010.00584.x DOI: https://doi.org/10.1111/j.1466-8238.2010.00584.x
GODOY, M. D. P.; MEIRELES, A. J. de A.; LACERDA, L. D. de. Mangrove Response to Land Use Change in Estuaries along the Semiarid Coast of Ceará, Brazil. Journal of Coastal Research, [s. l.], v. 34, p. 524–533, 2018. Disponível em: https://api.semanticscholar.org/CorpusID:133740372. Acesso em: 16 jul. 2024. DOI: https://doi.org/10.2112/JCOASTRES-D-16-00138.1
GOLDBERG, L.; LAGOMASINO, D.; THOMAS, N.; FATOYINBO, T. Global declines in human‐driven mangrove loss. Global Change Biology, [s. l.], v. 26, n. 10, p. 5844–5855, 2020. DOI: 10.1111/gcb.15275 DOI: https://doi.org/10.1111/gcb.15275
GROOMBRIDGE, B. (org.). Global Biodiversity. Dordrecht: Springer Netherlands, 1992. 1992. DOI: 10.1007/978-94-011-2282-5 DOI: https://doi.org/10.1007/978-94-011-2282-5
GROTEN, S. M. E. NDVI—crop monitoring and early yield assessment of Burkina Faso. International Journal of Remote Sensing, [s. l.], v. 14, n. 8, p. 1495–1515, 1993. DOI: 10.1080/01431169308953983 DOI: https://doi.org/10.1080/01431169308953983
GUPTA, K.; MUKHOPADHYAY, A.; GIRI, S.; CHANDA, A.; DATTA MAJUMDAR, S.; SAMANTA, S.; MITRA, D.; SAMAL, R. N.; PATTNAIK, A. K.; HAZRA, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, [s. l.], v. 5, p. 1129–1139, 2018. DOI: 10.1016/j.mex.2018.09.011 DOI: https://doi.org/10.1016/j.mex.2018.09.011
HAMILTON, S. E.; CASEY, D. Creation of a high spatio‐temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC‐21). Global Ecology and Biogeography, [s. l.], v. 25, n. 6, p. 729–738, 2016. DOI: 10.1111/geb.12449 DOI: https://doi.org/10.1111/geb.12449
HAYASHI, S. N.; SOUZA-FILHO, P. W. M.; NASCIMENTO, W. R.; FERNANDES, M. E. B. The effect of anthropogenic drivers on spatial patterns of mangrove land use on the Amazon coast. PLOS ONE, [s. l.], v. 14, n. 6, p. e0217754, 2019. DOI: 10.1371/journal.pone.0217754 DOI: https://doi.org/10.1371/journal.pone.0217754
HERBERT, E. R.; BOON, P.; BURGIN, A. J.; NEUBAUER, S. C.; FRANKLIN, R. B.; ARDÓN, M.; HOPFENSPERGER, K. N.; LAMERS, L. P. M.; GELL, P. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, [s. l.], v. 6, n. 10, p. 1–43, 2015. DOI: 10.1890/ES14-00534.1 DOI: https://doi.org/10.1890/ES14-00534.1
HERRERA-SILVEIRA, J. A.; PECH-CARDENAS, M. A.; MORALES-OJEDA, S. M.; CINCO-CASTRO, S.; CAMACHO-RICO, A.; CAAMAL SOSA, J. P.; MENDOZA-MARTINEZ, J. E.; PECH-POOT, E. Y.; MONTERO, J.; TEUTLI-HERNANDEZ, C. Blue carbon of Mexico, carbon stocks and fluxes: a systematic review. PeerJ, [s. l.], v. 8, p. e8790, 2020. DOI: 10.7717/peerj.8790 DOI: https://doi.org/10.7717/peerj.8790
HUANG, K.; YANG, G.; YUAN, Y.; SUN, W.; MENG, X.; GE, Y. Optical and SAR images Combined Mangrove Index based on multi-feature fusion. Science of Remote Sensing, [s. l.], v. 5, p. 100040, 2022. DOI: 10.1016/j.srs.2022.100040 DOI: https://doi.org/10.1016/j.srs.2022.100040
HUETE, A. R. Vegetation Indices, Remote Sensing and Forest Monitoring. Geography Compass, [s. l.], v. 6, n. 9, p. 513–532, 2012. DOI: 10.1111/j.1749-8198.2012.00507.x DOI: https://doi.org/10.1111/j.1749-8198.2012.00507.x
INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE; BRAZIL (org.). Atlas dos manguezais do Brasil. Brasília: Instituto Chico Mendes de Conservação da Biodiversidade, 2018. Disponível em: https://www.gov.br/icmbio/pt-br/centrais-de-conteudo/publicacoes/atlas-1/atlas_dos_manguezais_do_brasil.pdf. Acesso em: 17 jul. 2024.
ISLAM, Md. M.; BORGQVIST, H.; KUMAR, L. Monitoring Mangrove forest landcover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto International, [s. l.], v. 34, n. 13, p. 1458–1476, 2019. DOI: 10.1080/10106049.2018.1489423 DOI: https://doi.org/10.1080/10106049.2018.1489423
JENSEN, J. R. Sensoriamento Remoto Do Ambiente: Uma Perspectiva Em Recursos Terrestres. [S. l.]: Parêntese Editora, 2009.
JIA, M.; WANG, Z.; MAO, D.; REN, C.; SONG, K.; ZHAO, C.; WANG, C.; XIAO, X.; WANG, Y. Mapping global distribution of mangrove forests at 10-m resolution. Science Bulletin, [s. l.], v. 68, n. 12, p. 1306–1316, 2023. DOI: 10.3390/rs11172043 DOI: https://doi.org/10.1016/j.scib.2023.05.004
JIA, M.; WANG, Z.; WANG, C.; MAO, D.; ZHANG, Y. A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sensing, [s. l.], v. 11, n. 17, p. 2043, 2019. DOI: 10.1016/j.scib.2023.05.004 DOI: https://doi.org/10.3390/rs11172043
KIDA, M.; FUJITAKE, N. Organic Carbon Stabilization Mechanisms in Mangrove Soils: A Review. Forests, [s. l.], v. 11, n. 9, p. 981, 2020. DOI: 10.3390/f11090981 DOI: https://doi.org/10.3390/f11090981
KUMAR, T.; MANDAL, A.; DUTTA, D.; NAGARAJA, R.; DADHWAL, V. K. Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans. Geocarto International, [s. l.], v. 34, n. 4, p. 415–442, 2019. DOI: 10.1080/10106049.2017.1408699 DOI: https://doi.org/10.1080/10106049.2017.1408699
LANLY, J.-P. Tropical forest resources. Rome: Food and Agriculture Organization of the United Nations, 1982. (FAO forestry paper, v. 30).
LOMBARD, F.; SOUMARÉ, S.; ANDRIEU, J.; JOSSELIN, D. Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. Ecological Informatics, [s. l.], v. 75, p. 102027, 2023. DOI: 10.1016/j.ecoinf.2023.102027 DOI: https://doi.org/10.1016/j.ecoinf.2023.102027
MARESMA, A.; CHAMBERLAIN, L.; TAGARAKIS, A.; KHAREL, T.; GODWIN, G.; CZYMMEK, K. J.; SHIELDS, E.; KETTERINGS, Q. M. Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Computers and Electronics in Agriculture, [s. l.], v. 169, p. 105236, 2020. DOI: 10.1016/j.compag.2020.105236 DOI: https://doi.org/10.1016/j.compag.2020.105236
MEDEIROS, I. D. S.; REBELO, V. A.; SANTOS, S. S. D.; MENEZES, R.; ALMEIDA, N. V.; MESSIAS, L. T.; NASCIMENTO, J. L. X. D.; LUNA, F. D. O.; MARMONTEL, M.; BORGES, J. C. G. Spatiotemporal dynamics of mangrove forest and association with strandings of Antillean manatee ( Trichechus manatus ) calves in Paraíba, Brazil. Journal of the Marine Biological Association of the United Kingdom, [s. l.], v. 101, n. 3, p. 503–510, 2021. DOI: 10.1017/S002531542100045X DOI: https://doi.org/10.1017/S002531542100045X
MEDEIROS, I. S.; SANTOS, S. S.; REBELO, V. A.; ALMEIDA, I. C.; VELOSO, T. M. G.; ALMEIDA, N. V.; BORGES, J. C. G. Effectiveness of Federal Protected Areas in the Preservation of Mangrove Forests on the Coast of the State of Paraíba, Brazil. Anais da Academia Brasileira de Ciências, [s. l.], v. 95, n. 1, p. e20211079, 2023. DOI: 10.1590/0001-3765202320211079 DOI: https://doi.org/10.1590/0001-3765202320211079
MONDAL, P.; TRZASKA, S.; DE SHERBININ, A. Landsat-Derived Estimates of Mangrove Extents in the Sierra Leone Coastal Landscape Complex during 1990–2016. Sensors, [s. l.], v. 18, n. 1, p. 12, 2017. DOI: 10.3390/s18010012 DOI: https://doi.org/10.3390/s18010012
MORENO, G. M. D. S.; DE CARVALHO JÚNIOR, O. A.; DE CARVALHO, O. L. F.; ANDRADE, T. C. Deep semantic segmentation of mangroves in Brazil combining spatial, temporal, and polarization data from Sentinel-1 time series. Ocean & Coastal Management, [s. l.], v. 231, p. 106381, 2023. DOI: 10.1016/j.ocecoaman.2022.106381 DOI: https://doi.org/10.1016/j.ocecoaman.2022.106381
MOSCHETTO, F. A.; RIBEIRO, R. B.; DE FREITAS, D. M. Urban expansion, regeneration and socioenvironmental vulnerability in a mangrove ecosystem at the southeast coastal of São Paulo, Brazil. Ocean & Coastal Management, [s. l.], v. 200, p. 105418, 2021. DOI: 10.1016/j.ocecoaman.2020.105418 DOI: https://doi.org/10.1016/j.ocecoaman.2020.105418
NACHSHON, U.; IRESON, A.; VAN DER KAMP, G.; DAVIES, S. R.; WHEATER, H. S. Impacts of climate variability on wetland salinization in the North American prairies. Hydrology and Earth System Sciences, [s. l.], v. 18, n. 4, p. 1251–1263, 2014. DOI: 10.5194/hess-18-1251-2014 DOI: https://doi.org/10.5194/hess-18-1251-2014
PARIDA, B. R.; KUMAR, P. Mapping and dynamic analysis of mangrove forest during 2009–2019 using landsat–5 and sentinel–2 satellite data along Odisha Coast. Tropical Ecology, [s. l.], v. 61, n. 4, p. 538–549, 2020. DOI: 10.1007/s42965-020-00112-7 DOI: https://doi.org/10.1007/s42965-020-00112-7
PELAGE, L.; DOMALAIN, G.; LIRA, A. S.; TRAVASSOS, P.; FRÉDOU, T. Coastal Land Use in Northeast Brazil: Mangrove Coverage Evolution Over Three Decades. Tropical Conservation Science, [s. l.], v. 12, p. 1940082918822411, 2019. DOI: 10.1177/1940082918822411 DOI: https://doi.org/10.1177/1940082918822411
PHAM, T.; YOKOYA, N.; BUI, D.; YOSHINO, K.; FRIESS, D. Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sensing, [s. l.], v. 11, n. 3, p. 230, 2019. DOI: 10.3390/rs11030230 DOI: https://doi.org/10.3390/rs11030230
REIS-NETO, A. S. D.; MEIRELES, A. J. D. A.; CUNHA-LIGNON, M. Natural Regeneration of the Mangrove Vegetation on Abandoned Salt Ponds in Ceará, in the Semi-Arid Region of Northeastern Brazil. Diversity, [s. l.], v. 11, n. 2, p. 27, 2019. DOI: 10.3390/d11020027 DOI: https://doi.org/10.3390/d11020027
RODRIGUES, S. W. P.; SOUZA FILHO, P. W. M. E. Detecção de Mudanças no Manguezal ao Longo do Estuário do Rio Coreaú, Nordeste do Brasil a partir da Classificação Orientada a Objeto em Imagens Orbitais. Anuário do Instituto de Geociências - UFRJ, [s. l.], v. 43, n. 3, 2020. DOI: 10.11137/2020_3_158_169 DOI: https://doi.org/10.11137/2020_3_158_169
SAENGER, P.; HEGERL, E. J.; DAVIE, J. D. Global status of mangrove ecosystems. International Union for Conservation of Nature and Natural Resources, n. 3, 1983. DOI: 10.1007/BF02340516 DOI: https://doi.org/10.1007/BF02340516
SANTOS PAZ, J. P.; VIEIRA, C. V. EVOLUÇÃO DO USO E COBERTURA DO SOLO NO MUNICÍPIO DE SÃO FRANCISCO DO SUL – ESTADO DE SANTA CATARINA. Boletim Paranaense de Geociências, [s. l.], v. 74, n. 1, 2018. DOI: 10.5380/geo.v74i1.50945 DOI: https://doi.org/10.5380/geo.v74i1.50945
SEMENIUK, V.; CRESSWELL, I. D. Australian Mangroves: Anthropogenic Impacts by Industry, Agriculture, Ports, and Urbanisation. Em: MAKOWSKI, Christopher; FINKL, Charles W. (org.). Threats to Mangrove Forests. Cham: Springer International Publishing, 2018. v. 25, p. 173–197. DOI: 10.1007/978-3-319-73016-5_9 DOI: https://doi.org/10.1007/978-3-319-73016-5_9
SERVINO, R. N.; GOMES, L. E. D. O.; BERNARDINO, A. F. Extreme weather impacts on tropical mangrove forests in the Eastern Brazil Marine Ecoregion. Science of The Total Environment, [s. l.], v. 628–629, p. 233–240, 2018a. DOI: 10.1016/j.scitotenv.2018.02.068 DOI: https://doi.org/10.1016/j.scitotenv.2018.02.068
SHI, T.; LIU, J.; HU, Z.; LIU, H.; WANG, J.; WU, G. New spectral metrics for mangrove forest identification. Remote Sensing Letters, [s. l.], v. 7, n. 9, p. 885–894, 2016. DOI: 10.1080/2150704X.2016.1195935 DOI: https://doi.org/10.1080/2150704X.2016.1195935
SILVA, E.; GALVÍNCIO, J. D.; BRANDÃO NETO, J. L.; MORAIS, Y. C. B. Space-time analysis of environmental changes and your reflection on the development of phenological of vegetation of mangrove. Journal of Agriculture and Environmental Sciences, [s. l.], v. 4, n. 1, 2015. DOI: http://dx.doi.org/10.15640/jaes.v4n1a30 DOI: https://doi.org/10.15640/jaes.v4n1a30
SILVA, J. B. Sensoriamento remoto aplicado ao estudo do ecossistema manguezal em Pernambuco. Tese (Doutorado em Geografia) – Universidade Federal de Pernambuco, Centro de Filosofia e Ciências Humanas, Recife, 2012.
SILVA, S. A.; BARROS, V. P. de O.; OLIVEIRA, A. R. de. Estrutura fitossociológica do manguezal da Lagoa do Roteiro, Alagoas, Nordeste do Brasil. Ciência Florestal, [s. l.], v. 30, n. 2, p. 532–541, 2020. DOI: 10.5902/1980509839676 DOI: https://doi.org/10.5902/1980509839676
SONG, S.; DING, Y.; LI, W.; MENG, Y.; ZHOU, J.; GOU, R.; ZHANG, C.; YE, S.; SAINTILAN, N.; KRAUSS, K. W.; CROOKS, S.; LV, S.; LIN, G. Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change. Nature Communications, [s. l.], v. 14, n. 1, p. 756, 2023. DOI: 10.1038/s41467-023-36477-1 DOI: https://doi.org/10.1038/s41467-023-36477-1
SOUZA, A. P. S. D.; SOUZA, I. S. D.; OLAVO, G.; LOBÃO, J. S. B.; SÃO JOSÉ, R. V. D. Mapeamento e identificação de vetores responsáveis pela supressão do manguezal na Zona Costeira do Baixo Sul da Bahia, Brasil (Mapping and identification of vectors responsible for mangrove suppression in the Southern Bahia Lowlands, Brazil). Revista Brasileira de Geografia Física, [s. l.], v. 12, n. 7, p. 2503–2521, 2020. DOI: 10.26848/rbgf.v12.7.p2503-2521 DOI: https://doi.org/10.26848/rbgf.v12.7.p2503-2521
SPALDING, M.; BLASCO, F.; FIELD, C.; INTERNATIONAL SOCIETY FOR MANGROVE ECOSYSTEMS; WORLD CONSERVATION MONITORING CENTRE; INTERNATIONAL TROPICAL TIMBER ORGANIZATION (org.). World mangrove atlas. Okinawa: The International Society for Mangrove Ecosystems, 1997.
SREELEKSHMI, S.; PREETHY, C. M.; VARGHESE, R.; JOSEPH, P.; ASHA, C. V.; BIJOY NANDAN, S.; RADHAKRISHNAN, C. K. Diversity, stand structure, and zonation pattern of mangroves in southwest coast of India. Journal of Asia-Pacific Biodiversity, [s. l.], v. 11, n. 4, p. 573–582, 2018. DOI: 10.1016/j.japb.2018.08.001 DOI: https://doi.org/10.1016/j.japb.2018.08.001
SUN, Q.; JIAO, Q.; QIAN, X.; LIU, L.; LIU, X.; DAI, H. Improving the Retrieval of Crop Canopy Chlorophyll Content Using Vegetation Index Combinations. Remote Sensing, [s. l.], v. 13, n. 3, p. 470, 2021. DOI: 10.3390/rs13030470 DOI: https://doi.org/10.3390/rs13030470
THOMAS, N.; BUNTING, P.; LUCAS, R.; HARDY, A.; ROSENQVIST, A.; FATOYINBO, T. Mapping Mangrove Extent and Change: A Globally Applicable Approach. Remote Sensing, [s. l.], v. 10, n. 9, p. 1466, 2018. DOI: 10.3390/rs10091466 DOI: https://doi.org/10.3390/rs10091466
TRAN, T. V.; REEF, R.; ZHU, X.; GUNN, A. Characterising the distribution of mangroves along the southern coast of Vietnam using multi-spectral indices and a deep learning model. Science of The Total Environment, [s. l.], v. 923, p. 171367, 2024. DOI: 10.1016/j.scitotenv.2024.171367 DOI: https://doi.org/10.1016/j.scitotenv.2024.171367
WINARSO, G.; PURWANTO, A.; YUWONO, D. NEW MANGROVE INDEX AS DEGRADATION/HEALTH INDICATOR USING REMOTE SENSING DATA : SEGARA ANAKAN AND ALAS PURWO CASE STUDY. Em: 2014, [s. l.], . Anais [...]. [S. l.: s. n.], 2014.
WORTHINGTON, T.; SPALDING, M. Mangrove Restoration Potential: A global map highlighting a critical opportunity. [S. l.]: Apollo - University of Cambridge Repository, 2018. DOI: 10.17863/CAM.39153
XIA, Q.; QIN, C.-Z.; LI, H.; HUANG, C.; SU, F.-Z. Mapping Mangrove Forests Based on Multi-Tidal High-Resolution Satellite Imagery. Remote Sensing, [s. l.], v. 10, n. 9, p. 1343, 2018. DOI: 10.3390/rs10091343 DOI: https://doi.org/10.3390/rs10091343
XIA, Q.; QIN, C.-Z.; LI, H.; HUANG, C.; SU, F.-Z.; JIA, M.-M. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecological Indicators, [s. l.], v. 113, p. 106196, 2020. DOI: 10.1016/j.ecolind.2020.106196 DOI: https://doi.org/10.1016/j.ecolind.2020.106196
XU FANG, G. X., ZHANG Ying, ZHAI Liang, LIU Jia. Extraction method of intertidal mangrove by using Sentinel-2 images. Bulletin of Surveying and Mapping, [s. l.], v. 0, n. 2, p. 49, 2020. DOI: 10.13474/j.cnki.11-2246.2020.0043
YANG, G.; HUANG, K.; SUN, W.; MENG, X.; MAO, D.; GE, Y. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS Journal of Photogrammetry and Remote Sensing, [s. l.], v. 189, p. 236–254, 2022. DOI: 10.1016/j.isprsjprs.2022.05.003 DOI: https://doi.org/10.1016/j.isprsjprs.2022.05.003
YUE, J.; TIAN, J.; PHILPOT, W.; TIAN, Q.; FENG, H.; FU, Y. VNAI-NDVI-space and polar coordinate method for assessing crop leaf chlorophyll content and fractional cover. Computers and Electronics in Agriculture, [s. l.], v. 207, p. 107758, 2023. DOI: 10.1016/j.compag.2023.107758 DOI: https://doi.org/10.1016/j.compag.2023.107758
ZHANG, X.; TIAN, Q. A mangrove recognition index for remote sensing of mangrove forest from space. Current Science, [s. l.], v. 105, p. 1149–1154, 2013.
ZUPIC, I.; ČATER, T. Bibliometric Methods in Management and Organization. Organizational Research Methods, [s. l.], v. 18, n. 3, p. 429–472, 2015. DOI: 10.1177/1094428114562629 DOI: https://doi.org/10.1177/1094428114562629
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Geoconexões

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
O autor na submissão do artigo transfere o direito autoral ao periódico.