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ABSTRACT 
Some battery cells reach End of Life before others 

because they have small parametric differences, even if 

they are produced together. If End of Life cells can be 

identified, the damaged cells can be replaced or 

switched-off from the circuit. So, maximum power and 

charge/discharge rate can be limited to prevent 

remaining healthy cells from operating above their rated 

capacities, extending the battery lifetime. This work 

proposes the application of artificial intelligence to 

identify cells at the End of Life, considering LiFePo4 

Lithium-ion parallel battery packs. Measurements on 

each cell are not required; only the output voltage signal 

of the battery. Support Vector Machines were used with 

current and voltage inputs processed by Wavelet 

Transform and Fourier Transform. The proposed method 

opens up possibilities for a new battery management 

strategy in electric vehicles, inserting the Battery 

Management System in the charging stations and 

allowing more sophisticated diagnostics.  
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IDENTIFICAÇÃO DE CÉLULAS FINALIZADAS EM BATERIAS DE ÍONs DE LÍTIO 
ATRÁVES DE MÁQUINAS DE VETORES DE SUPORTE UTILIZANDO O BMS DENTRO 

DAS ESTAÇÕES DE RECARGA 

RESUMO 
Algumas células de baterias chegam ao fim da vida útil 
antes de outras, porque possuem pequenas diferenças 
paramétricas, mesmo que pertençam a mesma linha de 
produção. As células danificadas podem ser substituídas 
ou desligadas do circuito se as células no final de vida útil 
forem ser identificadas. A potência máxima e a taxa de 
carga / descarga podem ser limitadas para impedir que as 
células saudáveis restantes operem acima de sua 
capacidade nominal, prolongando a vida útil da bateria. 
Este trabalho propõe a aplicação de inteligência artificial 
para a identificação de células que atingiram a fim da vida 

útil em baterias paralelas de íons de lítio LiFePo4. 
Medições em cada célula não são necessárias, apenas o 
sinal de tensão de saída da bateria. Máquinas de vetores 
de suporte foram usadas com para manipular entradas 
de corrente e tensão, que são processadas pela 
Transforma Wavelet e de Fourier. O método proposto 
abre possibilidades para uma nova estratégia de 
gerenciamento de bateria em veículos elétricos, 
inserindo o Sistema de Gerenciamento de Bateria (BMS) 
nas estações de carregamento e permitindo diagnósticos 
mais sofisticados.

 
 

PALAVRAS-CHAVE: Bateria, Veículos elétricos, BMS, Transformada de Wavelet, Máquina de vetor de suporte. 
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1 INTRODUCTION 

Nowadays, the rate of research associated with efficiency, protection, and applications of 

power batteries is increasing due to emerging technologies such as Electric Vehicles (EV). 

Significant of these efforts focus on lithium-ion based batteries, which do not have memory effects 

and are energetically dense (Manzetti & Mariasiu, 2015). 

Batteries of EVs need high-energy storage capacity, high rate of charge/discharge, and long 

useful life, to make the technology competitive compared to fossil fuel-based vehicles. Batteries 

are a large part of the total cost of EVs. Furthermore, they have a limited life cycle, and the 

degradation is accelerated by many factors, such as charge/discharge rate, temperature, and 

Depth of Discharge (DOD) (Farzin, et al., 2016; Redondo-Iglesias, et al., 2019).   

 Batteries of EVs Degradation can be evaluated through State of Health (SOH), expressed by: 
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where 
maxQ  is the present maximum energy storage capacity, and 0

maxQ  its initial value. 

When SOH is low, energy storage capacity and power of battery' cells are decreased. 

Besides that, aging effects reduce the system's exponentially dynamic performance (Barré, et al., 

2013), so small differences between cells SOH are increased by aging. 

Some cells reach End of Life (EOL) before others, because they have small parametric 

differences, even if they are produced together. These cells are called damaged, dead, or finished 

(Shafiei, et al., 2016; Hommalai and Khomfoi, 2015). 

In lithium-ion based batteries, EOL is commonly defined when SOH reaches 80%. From this 

point, degradation occurs at a much higher speed. 

If EOL cells can be identified, they can be replaced or switched-off from the circuit. So, 

maximum power and charge/discharge rate can be limited to prevent remaining healthy cells from 

operating above their rated capacities, extending battery lifetime (Huynh, 2014). 

Battery Management Systems (BMS) are used to observe, control, and protect batteries 

through sensors in each cell or stack of cells, which compose the battery. In Eichi et al. (2013), a 

review of BMS functions was done, where the State of Charge (SOC), SOH, and EOL estimators are 

reported. However, battery parameters, such as internal impedances variable through 

temperature and aging, are required. To compute these values, voltage, current, and temperature 

measurements in each cell are done. BMS also performs cell balancing, switching each one of them 

to maintain the same SOC. 

Some EVs batteries can be composed with more than 300 cells, with different series and 

parallel combinations. Each cell commonly uses a single analog-to-digital converter for voltage 

measurement or voltage-level converters with multiplexed outputs, so it is a complicated and 

expensive monitoring process (Eichi et al., 2013; Collet et al., 2011).  
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Recent works have begun to implement computational intelligence methods, such as 

Artificial Neural Networks (ANN), to perform some BMS functions without requiring knowledge of 

internal battery parameters. However, most of the developed proposals are observer algorithms 

to estimate the SOC or SOH of the battery, without acting directly in protecting the system (Chen 

et al., 2016; Chaoui and Ibe-Ekeocha, 2017). 

Artificial intelligence methods are used in several engineering areas, such as classification 

and location of faults in power transmission and distribution lines. In these applications, it is more 

efficient to use data processing tools, such as Fourier Transform (FT) or Wavelet Transform (WT) 

to create the inputs for Neural Networks, Support Vector Machines (SVM), or Fuzzy Neural 

Networks, rather than to use electrical signals in the time domain (Livani and Evrenosoglu, 2010; 

Abdollahi and Seyedtabail, 2010). 

In Antón et al. (2015), the SOC was estimated through SVM, using tests to extract 

parameters during charge and discharge cycles. The performed tests were applying symmetrical 

square waves of current, testing the charging and discharging dynamics of cells. However, 

temperature, current, and voltage of cells were the SVM input data, and therefore, require 

measurements. 

SOH and remaining life estimation of each cell is a methodology that can be used to identify 

EOL. However, much of the proposed techniques, besides needing cell measurements, have low 

applicability, massive complexity, computational requirements, or dependency on estimating 

other parameters, such as aging effects, as described in Hu et al. (2016). 

Low SOH cell identification in parallel associations of EVs batteries was proposed in Gong 

et al. (2014), a test bench was used to perform charging and discharging analysis on packs, and 

data from each cell was collected. However, this method is not viable for an onboard BMS in 

parallel battery packs, because current measure on each cell and additional sensors were required 

for the analysis. 

This work proposes the application of SVM to identity cells that already reached the EOL in 

LiFePo4 Lithium-ion parallel battery packs. Measurements on each cell are not required, but only 

the output voltage signal of the battery. The proposed method is the first function for a BMS with 

only measurements on battery terminals, reducing its cost, increasing security on parallel batteries, 

and allowing it to be removed from inside electric vehicles and positioned at the charging stations. 

This new strategy enables the charging stations to make sophisticated diagnostics on the battery 

by analyzing test pulses, which can easily be performed remotely by the manufacturer in real-time 

with an internet connection. 

2 THEORETICAL FUNDAMENTALS 

2.1 Battery model 

Several different types of models for battery cells are found in literature, such as 

experimental, electrochemical, and electrical models in Tremblay and Dessaint (2009). The 
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Este é um artigo publicado em acesso aberto sob uma licença Creative Commons 

 

simulations of this work are based on the model suggested in Tremblay et al. (2007), a modification 

of Shepherd's model.  
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The expression describes the battery voltage batV  during discharge as a function of the 

temperature T . Where Q  is the storage capacity of the battery in Ah, ti  is the extracted capacity, 
*i  represents dynamic characteristics of current in low frequencies, K  is the polarization 

resistance in Ohms, aT  is the ambient temperature, A  is the exponential voltage, B  is the 

exponential capacity, and C  is the slope of the discharge curve. 

However, these parameters are not constant, since the temperature and the aging effect 

may change, for example, the internal resistance and the maximum charge capacity (Anseán, 2017; 

Broussely et al., 2005).  

The following expressions describes influence of temperature in battery parameters: 
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where 
refT  is the nominal ambient temperature,   and   are constants of the Arrhenius equation 

for the influence of temperature on the internal resistance. 

2.2 Wavelet transform 

The WT performs analysis in both the time domain and frequency domain by decomposing 

the input signal in the selected mother wavelet's orthonormal bases. 

Wavelet Multi-Resolution Analysis (MRA) is a Fast Wavelet Transform in the discrete 

domain. It applies convolutions with a filter bank containing a high-pass and low-pass filters, 

associated with the mother wavelet. Results obtained by the low-pass filtering are the 

Approximation Coefficients An, which captures trends of the signal. High-pass filtering results in 

Detail Coefficients Dn, extracting fluctuations, and transients. 

This process of convolution with the filter bank can be repeated using the previous low-

pass filter output as the next input signal, increasing the decomposition level of the transform, 
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Este é um artigo publicado em acesso aberto sob uma licença Creative Commons 

 

according to Figure 1. This procedure is limited only by the initial signal's sampling rate, which 

decreases by half at each level (Murguia & Rosu, 2011). 

  

Figure 1: Multi-Resolution analysis. 

Several mother wavelets were tested at many decomposition levels to quantify the 

transients in the batteries' voltage signals, while the power pulses were applied. It was verified 

higher sensitivity to the transient pattern with Haar's first decomposition level as mother wavelet. 

2.3 Support vector machines 

SVMs are structures based on Perceptron Artificial Neural Networks, with a non-linear 

transformation to construct the decision surfaces, used to solve binary classification problems 

(Boser et al., 1992). 

In a linear SVM, classes are separated through a hyperplane generated by Equation 7. Note in 

Equation 7 that )(xY  identifies where class input x  belongs, similar to a classification ANN. 

bxWxY += .)(  (7) 

However, an infinite number of solutions can be obtained by training the same ANN 

because of the randomness of training/testing data selection, weights initialization, and the stop 

conditions. In other words, the hyperplane may have angular and linear variations and still separate 

the classes correctly. 

The main goal of SVMs is an optimum solution for hyperplane through the maximization of 

margins between support vectors and the separation surface (Cortes and Vapnik, 1995). 

3 DATABASE GENERATION AND SIMULATION PROCEDURES 

Identification of EOL cell positions is possible due to their arrangement in the electrical 

circuit. Impedances between each cell and the battery terminal are different inside each parallel 
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block, as shown in Figure 2, where cell-to-cell connections of an electric car ZEBRA battery are 

exposed.  

  

Figure 2: Battery cells. 

Simulations were performed on parallel blocks of five cells, according to Figure 3, to create 

the necessary database for training SVMs. The Matlab SymPowerSystems Toolbox is used. For this 

purpose, the model presented in section 2.1 is used. Then, the Fourier and Wavelet transforms are 

applied to the voltage and current signals. The identification of the EOL and the cell position is then 

developed using SVM. Among the simulations, an EOL cell was randomly inserted in the circuit. 

The electrical circuit comprises the cells' association, an external resistance used to test the 

battery back, a voltmeter, and a MOSFET to generate the test pulse. Also, the electrical impedance 

of the wires which connects those elements was considered. 

 

Figure 3: Charging station with battery management system. 

 

The proposed method can be explained in four steps: 

• Internal battery switches isolate and connect the parallel blocks of cells one by one 
to the battery terminals; 

• For each parallel block, a standard test pulse is applied to the battery terminals, 
connecting it to a predefined resistive load;  

• WT and FT are used to evaluate the dynamical pattern of voltage and current 
signals; 
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• A set of SVMs is used to interpret the outputs of the data processing and identify 
the EOL cells with its position in the parallel circuit. 

4 IN-CHARGER BATTERY MANAGEMENT SYSTEM 

This study proposes a new function: identification of cells that were reached EOL through 

load tests. An on-board BMS can perform this analysis, however, because they depend only on 

terminal measurements, it is possible the implementation in charging stations, where a BMS inside 

stations can diagnose problems in several vehicles. 

In-charger BMS can execute complex analysis that is not usually performed, such as 

voltage/current/load pulse tests for estimation of the battery parameters, SOH, and adjustments 

in charge/discharge controllers' weights. It also facilitates software updates through an internet 

connection and real-time analysis by the manufacturer. 

However, some BMS functions need to be performed inside EVs, such as charge, discharge, 

and temperature controllers but require a much simpler system. So, two different BMS can be 

used, as shown in Figure 4, one inside a vehicle with essential functions, and another in charging 

stations to perform tests and more complex analysis. 

  

Figure 4: In-Vehicle and in-charger BMS. 

5 SIMULATION & DATA PROCESSING RESULTS 

Parallel blocks of five LiFePO4 cells were simulated in Matlab SymPowerSystems Toolbox, 

considering the nominal parameters shown in Table 1. 

Table 1: Nominal LiFePO4 parameters. 

Parameter Value 

Voltage (100% SOC) 
Voltage (90% SOC) 

Open-circuit voltage 
Cut-off voltage 

Capacity 
Discharge current 
Internal resistance 

3.3V 
2.85V 
3.75V 

2.475V 
2.3Ah 
2.3A 

16mΩ 



LUMERTZ ET AL (2020)  
 

 

HOLOS, Ano 36, v.6, e9822, 2020 8 
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Tref 
Thermal resistance 

Thermal time constant 
Exponential voltage 
Exponential capacity 

25oC 
0.55C/W 

1000s 
3.5V 

0.11Ah 

Simulations were done with 2880 different cases, in which the following parameters were 

varied randomly: 

• Cells initial SOC (between 79% and 99%); 

• Finished cell SOH (between 30% and 80%); 

• Cells initial temperature (between 20oC and 30oC); 

• Finished cell position (between 0 and 5). 

  

Figure 5: Two dimensional space. 
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Figure 6: Three dimensional space. 

In each case, battery terminals were connected to a resistive load of 0.03Ω for a period of 

0.5s. The third harmonic magnitude extracted from the Fast Fourier Transform (FFT) was applied 

to the voltage signal measured in the test load pulse, and the WT coefficients was applied to the 

voltage signal with Haar mother wavelet current signal with Daubechies 3 function, both in first 

decomposition level. A sampling rate of 10kHz was used. 

Simulated cases in the processed two/three-dimensional spaces are shown in Figures 5 and 

6, with normalized data. From Figure 5, it is possible to observe that cases with EOL cell in position 

five can be easily identified, as this class can be easily isolated from others even with a linear 

function (hyperplane).  

In Figure 6.a, the other classes' dispersion can be seen, where there are regions with higher 

data density. Figure 6.b shows that the majority of data from classes is separable with a non-linear 

kernel. Most of the cases in positions 1 and 2 are above, and most of the cases in positions 3 and 

4 are below the class without EOL cells, being a reasonable estimation of the EOL cell position. 

However, a better distinguishment of positions 1 from 2, and 3 from 4 are necessary. The latter is 

done through the data processing shown in Figure 6.c, where almost linear relationships can be 

seen, which is expected, as the data are processed voltage and current signals of a resistive load. 

The relations shown in Figure 6.c are not precisely linear because different mother wavelets were 

used to process the voltage and current signals. Thus, the classes can be easily identified. 

6 CLASSIFICATION RESULTS 

As the SVM can only classify the data in two groups, six SVMs were used to distinguish 

classes shown in Figures 5 and 6 from each other. Expected outputs for each SVM are shown in 
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Table 2, where classes 1 to 5 correspond to positions 1 to 5, and class 0 corresponds to the data 

without EOL cells. 

Table 2: Support vector machines outputs. 

 SVM 0 SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 

Class 0 
Class 1 
Class 2 
Class 3 
Class 4 
Class 5 

1 
-1 
-1 
-1 
-1 
-1 

-1 
1 
-1 
-1 
-1 
-1 

-1 
-1 
1 
-1 
-1 
-1 

-1 
-1 
-1 
1 
-1 
-1 

-1 
-1 
-1 
-1 
1 
-1 

-1 
-1 
-1 
-1 
-1 
1 

 

Due to the non-linear class separation seen in Figure 6, Gaussian kernels were used to the 

SVMs. Training data corresponds to 80% of the total simulated cases. The remaining 20% were 

used for testing. Test results are shown in Table 3, where better accuracy was obtained by the 

SVM5, and worst accuracy by SVMs 3 and 4. These results reflect the class superposition and 

dispersion seen in Figures 5 and 6. 

 

 Table 3: Performance of the support vector machines. 

 SVM 0 SVM 1 SVM 2 SVM 3 SVM 4 SVM 5 

Box constrait 
Kernel scale 

Accuracy 

10 
0.01 

92.4% 

2 
0.2 

99.7% 

10 
0.2 

94.4% 

3 
0.05 

90.3% 

3 
0.05 

86.5% 

1 
1 

100% 

 

The influence of the different simulation parameters on the accuracy of SVMs 1 to 4 are 

shown in Figure 7. The simulation parameters were generated randomly within their respective 

limits. Then, 480 values are used for each parameter, with each set of parameters being executed 

six times, varying the position of the dead cell, totaling 2880 values. According to Figure 7, the low 

variations in each SVM error indicate the adequate generalization capacity expected from the 

SVMs; the classification did not specialize in a specific range of input values and maintained its 

performance across space. Besides that, the EOL cell identification can be done with different 

parameters during the battery charging process to cross data and reduce error probability.  
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Figure 7: Accuracy through simulation parameters. 

 

Figure 8 shows the confusion matrix for the final classification with all the SMVs. In the 

predicted class, the total number of elements in the class 0 is higher than 100%, which means that 

elements from other classes were assigned this class. The total number of elements in class 1 is 

higher than 100% in the true class, which means that some class elements were classified into 

more than one class. In classes 2, 3, and 4, the total number of elements is lower than 100%. Thus, 

some elements of these classes were not assigned to any class. 
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Figure 8: Confusion Matrix 

The samples were randomly shuffled, and some extra rounds were performed to validate 

the proposed approach. Table 4 shows the performance of SVM0 over five rounds. Table 5 shows 

the performance of SVM4, which achieved the worst result, over five simulation rounds. 

Table 4: Extra evaluation rounds for SVM0 

Round 1 2 3 4 5 

Accuracy 90% 92% 94.1% 92.4% 91.3% 

 

Table 5: Extra evaluation rounds for the worst case: SVM4 

Round 1 2 3 4 5 

Accuracy 85.1% 86.8% 86.1% 85.4% 86.8% 

 

As expected, the variation is low when some extra rounds are performed. This behavior 

happens because the SVM uses only the set boundary elements to define the classification surface. 

Besides, the box constraint values used are high, which reduces the influence of noise/fluctuations 

in the data. 

7 CONCLUSION 

This work shows a new battery protection system concept for EVs by inserting a charging 

station management system. This method can be used to apply test pulses during the charging 

process and estimate battery parameters, as identification of EOL cell positions with the artificial 
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intelligence approach proposed in this work. The test pulse used has low resistance, so it is similar 

to a short-circuit test, but the resistance needs to be constant and well known. 

Finished cells in the most distant position from battery terminals show to be easy to be 

detected. Besides, damaged cells closest to the terminals are easily detectable when multiple 

mother wavelets are used.  The results show that the proposed methodology presented adequate 

results, with lower precision of 90.3% and 86.5% in positions 3 and 4, respectively. Future works 

can use a higher number of different mother wavelets and decomposition levels to increase its 

accuracy. 

8  REFERÊNCIAS  

Abdollahi, A., Seyedtabail, S. (2010). Transmission line fault location estimation by Fourier and 
wavelet transforms using ANN. 4th International Power Engineering and Optimization 
Conference, Shah Alam, pp. 573-578. 

Anseán, D., et al. (2017). Lithium-ion battery degradation indicators via incremental capacity 
analysis. IEEE International Conference on Environment and Electrical Engineering and 2017 
IEEE Industrial and Commercial Power Systems Europe, Milan, pp. 1-6.  

Antón, J. C. Á., Nieto, P. J. G., Viejo, C. B., Vilán, J. A. V. (2013). 'Support Vector Machines Used to 
Estimate the Battery State of Charge. IEEE Transactions on Power Electronics, vol. 28, pp. 5919-
5926. 

Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., Riu, D. (2013). A review on lithium-ion 
battery ageing mechanisms and estimations for automotive applications. Journal of Power 
Sources, vol. 241, pp. 680-689. 

Boser, B. E., Guyon, I. M., Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. 
Proceedings of the Fifth Annual Workshop of Computational Learning Theory, pp. 144-152, 
Pittsburgh. 

Broussely, M., et al. (2005). Main aging mechanisms in Li ion batteries. Journal of Power Sources, 
vol. 146, pp. 90-96. 

Chaoui, H., Ibe-Ekeocha, C. C. (2017). State of Charge and State of Health Estimation for Lithium 
Batteries Using Recurrent Neural Networks. IEEE Transactions on Vehicular Technology, vol. 
66, pp. 8773-8783. 

Chen, X., et al. (2016). Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for 
Lithium-Ion Battery State of Charge Estimation in Electric Vehicles. IEEE Transactions on 
Vehicular Technology, vol. 65, pp. 1936-1947. 

Collet, A., Crébier, J. C., Chureau, A. (2011). Multi-Cell Battery Emulator for Advanced Battery 
Management System Benchmarking. IEEE International Symposium on Industrial Electronics, 
Gdansk. 



LUMERTZ ET AL (2020)  
 

 

HOLOS, Ano 36, v.6, e9822, 2020 14 
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