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ABSTRACT 
Technological advances have contributed to applications 
of nonparametric methodologies. The objective of this 
paper was to determine a discriminant function capable 
of predicting the stability condition of the slopes of the 
database under study. It is important to note that the 
methodology does not replace the stability analysis, but 
it can work very well for a preliminary analysis by 
selecting the slopes that must be intervened. The 
database used is composed by 59 slopes. A combination 

of multivariate statistical techniques, specifically 
principal component analysis and discriminant analysis, 
was used to determine the slope stability condition. The 
cross validation presented a global probability of success 
of 89.83%, the errors obtained in the cross validation 
were in favor of safety, with 5 stable slopes classified as 
unstable and only 1 unstable slope classified as stable. In 
the external validation were used 12 new slopes, which 8 
slopes were correctly classified correctly. 
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AVALIAÇÃO DAS CONDIÇÕES DE ESTABILIDADES DE TALUDES POR MEIO DE 
ANÁLISES MULTIVARIADAS 

 
RESUMO 
Os avanços tecnológicos têm contribuído para aplicações 
de metodologias não paramétricas. Este trabalho teve 
como objetivo determinar uma função discriminante 
capaz de prever a condição de estabilidade dos taludes 
do banco de dados em estudo. Importante observar que 
a metodologia não substitui a análise de estabilidade, 
mas pode funcionar muito bem para uma análise 
preliminar selecionando os taludes que devem ser 
intervindos. O banco de dados utilizado é composto por 
59 taludes. Para determinação da condição de 

estabilidade dos taludes foi utilizada uma combinação de 
técnicas da estatística multivariada, especificamente a 
análise de componentes principais e a análise 
discriminante. A validação cruzada apresentou 
probabilidade global de acerto de 89,83%, os erros 
obtidos na validação cruzada foram a favor da segurança, 
sendo 5 taludes estáveis classificados como instáveis e 
apenas 1 talude instável classificado como estável. Já na 
validação externa foram utilizados 12 novos taludes, dos 
quais 8 taludes foram classificados corretamente. 
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1 INTRODUCTION 

Slope failures are complex natural phenomena that constitute a serious natural hazard in 

many countries (Wang et al., 2005). They are responsible for hundreds of millions of dollars of 

damage to public and private property every year (Wang et al., 2005). Figure 1 shows an example 

of a 165 m high mine slope failure. Currently, new methodologies to approach the problem are 

frequently proposed in the literature, such as Wang et al. (2005), Zare Naghadehi et al. (2013), 

Santos et al. (2018), Feng et al. (2018). 

 

Figure 1: Mine slope failure (Hoek et al., 2000). 

Studies related to slope failures are traditionally carried out by stability analyzes such as 

Ordinary (Fellenius, 1936), Janbu (1954), simplified Bishop (1955), Morgenstren and Price (1965) 

and Spencer (1967). The technological advances in data acquisition and processing prioritize the 

application of probabilistic approaches in detriment to deterministic ones, in addition to 

presenting more precise results. In the same line of research, technological advances contribute to 

the applications of non-parametric methodologies for predicting slope stability conditions, which 

differs from the determination of safety factors. 

Several studies in the literature have presented solid methodologies for predicting slope 

stability conditions. Santos et al. (2018) proposed a methodology for predicting mine slope stability 

conditions using a multiclass boosting algorithm via discriminant function, in this case for three 

types of stability conditions. Zare Naghadehi et al. (2013) proposed the MSII a mine slope stability 

index obtained through artificial neural networks with Rock Engineering Systems (RES) parameters 

proposed by Hudson (1992). Ferentinou and Fakir (2018) used artificial neural networks to select 

parameters and later predict slope stability conditions. Silva et al. (2018) used a set of multivariate 

analysis techniques for slope sectorization. 

According to Feng et al. (2018) recently, soft computing methods, such as Artificial Neural 

Networks (ANNs) and Support Vector Machine (SVM), have been increasingly applied to predict 

slope stability such as works of Wang et al. (2005), Gordan et al. (2016), Li and Kong (2014), 

Rukhaiyar et al. (2017), Xue (2017). Thus, this paper presents the application of a methodology, 

based on multivariate statistical techniques, to determine a discriminant function capable of 
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predicting slope classification, according to stability condition. The methodology applied resembles 

that proposed by Santos et al. (2018).  

The database used in this research for created of model was compiled and organized by 

Feng et al. (2018), from 59 slopes subject to circular failure, resulting from the compilation of 

databases of Feng (2000), Sah et al. (1994), Wang et al. (2005), Xu et al. (1999), Zhou and Chen 

(2009). Another database (new database) also compiled by Feng et al. (2018) was used to validate 

the model. This new database used for external validation was obtained from 12 case of literature 

that were not included in the training data set, and resulting from the compilation of databases of 

Hoek and Bray (1981), Lin et al. (1988), Madzic (1988), Yan and Li (2011). 

The database of Feng et al. (2018) is result of compilation published articles and books, 

which encompass many worldwide, slope stability case histories, for example natural slope and 

open pit mine. Information from the database used in this study is wide and it was representative 

of many different situations all over the world. The different types of slopes that make up the 

database in studies reinforce the premise of generalizing the proposed model. 

2 MATERIALS AND METHODS 

The database used in this research is composed of 59 slopes with variables relevant 

parameters in slope stability analysis with circular failure. The database parameters are geometry 

of the slope slope height H (m) and slope angle α; shear strength of the geomaterial: cohesion (kPa) 

and friction angle φ; gravity: unit weight γ (kN/m³) and water condition: pore pressure ratio ru, 

which is defined as the ratio of the pore pressure to the overburden pressure.  In addition to these 

variables, there is information about the stability condition of the slopes and the current safety 

factor, which allowed the evaluation of the results obtained. 

To determine the slope stability condition, a combination of multivariate statistical 

techniques with specific objectives was used. The first technique used was the principal 

components analysis (PCA) and then the discriminant analysis in the scores of PCA. Figure 2 shows 

the flowchart of the applied methodology. The script developed for statistical techniques was 

implemented using R Development Core Team (2006) developed by Foundation for Statistical 

Computing, located in Vienna, Austria. 

 

Figure 2: The flowchart of the applied methodology. 

The PCA was used with the purpose of reducing the size of the database allowing the 

visualization of a model with two dimensions. The selection of the number of components for 
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retention was performed based on the variance explained by each component, in addition to using 

the methods of Kaiser (1958) and Catell (1966). 

Fisher linear discriminant analysis was applied to scores resulting from principal component 

analysis. From the discriminant analysis an equation was generated that limited the two slope 

populations, stable and unstable. In order to evaluate the quality of the generated discriminant 

function, two types of validation were applied: cross validation and external validation. 

The cross validation consisted of the application of the discriminant function obtained in 

the slopes of the database, comparing the results and associated errors. The external validation 

consisted of the application of the discriminant function in new slopes, validation database, 

proposed by Feng et al. (2018). The main difference between the two types of validation is that 

cross-validation is influenced by the construction of the model, which is not verified by external 

validation, since new slopes are used. 

The methodology used to determine the quality of the discriminant function is in 

agreement with Santos et al. (2018). The overall probability success (OPS) is determined based on 

the total number of correctly classified slopes. The errors from the discriminant function were of 

three distinct natures, being the apparent error rate (AER), the error rate at which an unstable 

slope is classified as stable (Error1), and the error rate at which a stable slope is classified as 

unstable (Error2). From the errors it is possible to evaluate the discriminant function. Table 1 and 

Equations (1) to (4) present a general analysis of the methodology of evaluation of the discriminant 

function. 

Table 1: General analysis of the methodology of evaluation of the discriminant function. 

Conditions 
Stable (predicted 

condition) 
Unstable (predicted 

condition) 

Stable (real condition) 
Unstable (real condition) 

n11 
n21 

n12 
n22 

 

𝑂𝑃𝑆 =  
𝑛11 + 𝑛22

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22
 (1) 

  

𝐴𝐸𝑅 =  
𝑛12 + 𝑛21

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22
 (2) 

  

𝐸𝑟𝑟𝑜𝑟1 =  
𝑛21

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22
 (3) 

  

𝐸𝑟𝑟𝑜𝑟2 =  
𝑛12

𝑛11 + 𝑛12 + 𝑛21 + 𝑛22
 (4) 
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3 RESULTS AND DISCUSSIONS 

For the analysis of the individual behavior of the variables the boxplot was done, which 

allows to evaluate the distribution of the values of the variables. From Figure 3 (a) it is possible to 

observe that the values of the variables under study follow a pattern. The only variable that 

presents a greater degree of scattering is the slope height variable, justified by the nature of the 

variable when compared to the others. Thus, in order to avoid the effect of the high variability of 

the variable height of the slope in the study, the determination of the main components was done 

by means of the correlation coefficient, which standardizes the variables eliminating any large 

influence by the variables with greater variability. 

Figure 3 shows the correlogram, which was used to evaluate the correlation coefficients 

between the variables. 

 

Figure 3: (a) Boxplot of the variables; (b) correlogram of the variables. 

In Figure 3(b), it is possible perceive consistency between the results of laboratory tests and 

the practices of building the slopes. High correlations between the variables specific weight and 

friction angle, cohesion and slope angle, specific weight and cohesion, friction angle and slope 

angle, specific weight with slope angle were verificated.  

The high correlation between specific weight with friction angle and cohesion is justified by 

the fact that the specific weight represents the weight per unit of volume, that is, the larger the 

specific weight the more compact the grains, reflecting in a larger cohesion and friction angle 

between the particles. 

Another point to be highlighted is that a soil that presents high cohesion and high friction 

angle admits higher values of slope angles. Therefore, the high correlations between slope angle 

with cohesion and friction angle were verified. Thus, the correlations between the variables in the 

database are justified. 

The Bartlett sphericity test was applied in order to verify the existence of significant 

correlations among the variables, allowing the application of multivariate statistical techniques. 

Bartlett's sphericity test showed p-value less than 0.05, that is, with a 95% confidence level, it is 

possible to affirm that there are sufficient correlations for the application of the techniques and 

interpretation of the results (Table 2). 
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Table 2: Result of Bartlett's sphericity test. 

Statistical parameter Value 

x2 93.48 

df 15 

p-value 2.22 x 10-13 

 

Principal component analysis was applied in the database proposed by Feng, et al. (2018), 

generating 6 principal components. Table 3 presents the variability explained and accumulated by 

each principal component. It is possible to see that with only two components there is total 

variability explained of 63.2%. 

Table 3: Variance explained by each component. 
 

1ª Comp. 2ª Comp. 3ª Comp. 4ª Comp. 5ª Comp. 6ª Comp. 

Variability 
explained 

46.4% 16.7% 14.7% 10.5% 7.0% 4.7% 

Variability 
explained total 

46.4% 63.2% 77.8% 88.3% 95.3% 100.0% 

 

Figure 4 shows the screen plot of Catell (1966).  Through it was possible to evaluate the 

sufficient number of components that can be retained based on the smoothing of eigenvector 

values. In addition, in the graph it was possible to apply the criterion of Kaiser (1958). Thus was are 

selected the components that have eigenvalues greater than 1, that is, maintaining the linear 

combinations that can explain at least the amount of variance of a standardized original variable. 

 

Figure 4: Screen-plot by Catell (1966). 

From Figure 4 in conjunction with the explained variance analysis presented in Table 3, the 

number for principal component retention was 2 components. The first two main components 

together account for 63.2% of the total database variability and both have eigenvalues greater 

than 1. 

In order to evaluate the retention of the two main components, the importance of the 

original variables in each component was analyzed from the loadings of the variables in each main 
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component. Figure 5 shows the importance of the variables in the first and second principal 

components. 

 

Figure 5: (a) Importance of variables in the 1ª Component; (b) Importance of variables in the 2ª Component. 

The results of Figure 5 are related to the results of the correlogram in Figure 3. Still in Figure 

5 it is possible to observe that the first component had representation of all variables, except for 

the pore pressure ratio (ru). The justification for choosing the second principal component, since 

the variable pore pressure ratio is highly related to this component balancing the choice of the two 

components. Thus, the choice of the first two principal components was based on the premise that 

all variables are represented in these components. 

After the selection of the number of principal components, an analysis of the scores of the 

two components was performed. The multivariate normality test was performed and presented in 

Table 4, and it is possible to infer the multivariate non-normality of the two main components with 

a significance of 95%, due to the spreading of the data. The non-normality of the scores justifies 

the choice of Fisher's linear discriminant function. 

Table 4: Result of the multivariate normality test (Royston test). 

Statistical parameter Value 

H 17.21 
p-value 0.0001823 

 

Figure 6 shows the plot of the scores of the two main components, with slopes determinate 

by their stability conditions. The result of Figure 6 shows that the analysis of main components, 

through the selection of the first two components, was able to discriminate the slopes by their 

stability groups. Results similar to those found by Santos et al. (2018). From Figure 6 the choice of 

the discriminant analysis technique in the principal component analysis scores is justified. 
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Figure 6: Scores for the first and second principal component. 

In order to generate the discriminant function, the scores of PCA and the stability condition 

of the slopes, stable and unstable, were used according to Feng et al. (2018). Considering the 

multivariate normality test applied, the M box test was performed to verify if the data 

homocedasticity. Table 5 shows the result obtained the M box test. 

Table 5: M Box test result. 

Statistical parameter Value 

x2 14.082 
df 3 

p-value 0.002796 

 

From Table 5, it is verified that the p-value of the M Box test approached zero, in this case 

the null hypothesis is accepted and it is possible to affirm that there is no homoscedasticity in the 

data. Given this, the use of quadratic discriminant analysis would be adequate. However, the p-

value of the multivariate normality test tends to zero indicating the absence of multivariate 

normality. Since quadratic discriminant analyzes assume normality, Fisher's canonical discriminant 

functions were used, based on the premise that the present study is focused only on the behavior 

of the discriminant boundary between the slope stability conditions. 

Fisher's linear discriminant function was applied to the scores of the first two main 

components, resulting in Equation (5). 

𝐿𝐷 = 0.99𝐶𝑜𝑚𝑝. 1 − 0.32𝐶𝑜𝑚𝑝. 2 (5) 

The first validation applied in the discriminant function was the cross validation, which 

presented an overall probability of probability of success of 89.83%, classifying 53 slopes correctly. 

With this, the apparent error rate was 10.17%, classifying error 6 slopes. Table 6 presents the 

results of cross-validation. 

Table 6: Cross-validation of the discriminant function. 

Conditions Stable (predicted condition) Unstable (predicted condition) 

Stable (real condition) 26 5 
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Unstable (real condition) 1 27 

An analysis of the types of errors, error1 and error2 allowed to evaluate the discriminant 

function as a function with high safety rate, since error1 was only 3.5%, classifying only 1 unstable 

slope as stable. The largest contribution to the apparent error rate (AER) was in relation to error2, 

where stable slopes are classified as unstable slopes, with 5 slopes within this type of error, with a 

rate of 16.12%. Figure 7 shows a graph with the overall probability success (OPS), apparent error 

rate (TEA), error rate1 and error rate2. 

 

Figure 7: Cross-validation of the discriminant function. 

External validation was applied with the validation database proposed by Feng et al. (2018), 

consisting of 12 new slopes. The overall probability of success was 66.66%, registering only errors 

regarding the classification of stable slopes in unstable (error2), as well as in the model created in 

this study. This result highlights the conservative behavior of the model. Table 7 summarizes the 

results in relation to the classifications. 

Table 7: External validation. 

Conditions Stable (predicted condition) Unstable (predicted condition) 

Stable (real condition) 3 4 
Unstable (real condition) 0 5 

 

Table 8 presents the comparison of the results of the present study with the prediction 

models constructed by Feng et al. (2018) and Sah et al. (1994), in addition to the condition of the 

slopes under study, with their respective safety factor. Table 8 also shows the suitable threshold 

probability for classification. As there were only two classes studied by Feng et al. (2018), they 

proposed the slope cases with a conditional probability larger than the threshold probability (i.e., 

P (Stable|X) > 1/2) would be classified as “stable” slopes. 

Table 8: Comparison with the results of Feng et al. (2018) and Sah et al. (1994). 

Number 
of slope 

Actual FoS Predicted by Feng et 
al. (2018) 

Empirical equation 
by Sah et al. (1994) 

Present 
work 

N° Status FS Status P(Stable) Status Status 

1 Stable 1,84 Stable 58 % Stable Stable 
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2 Stable 1,49 Stable 54 % Unstable Unstable 
3 Stable 1,43 Unstable 31 % Unstable Unstable 
4 Stable 2,00 Stable 54 % Stable Unstable 
5 Stable 2,31 Stable 54 % Stable Stable 
6 Unstable 0,97 Unstable 27 % Unstable Unstable 
7 Unstable 0,65 Unstable 20 % Unstable Unstable 
8 Unstable 1,00 Unstable 27 % Unstable Unstable 
9 Unstable 0,65 Unstable 20 % Unstable Unstable 

10 Stable 1,12 Stable 54 % Stable Unstable 
11 Unstable 0,99 Stable 50 % Stable Unstable 
12 Stable 1,00 Stable 55 % Unstable Stable 

Analyzing the two types of validations applied, it was observed that the linear discriminant 

function obtained can be used as a predictor of stability conditions. The calculated and obtained 

errors showed that the function is extremely conservative, presenting errors in favor of slope 

safety. 

After the validations applied, the plot of the scores resulting from the analysis of principal 

components together with the linear discriminant function was constructed. Figure 8 shows the 

final result of the linear discriminant function, presented in Equation 5, which limits the two 

populations of stable and unstable slopes. From Figure 8 it is possible to visualize the adequacy of 

the discriminant function as limiting frontier in relation to the two stability conditions of the slopes 

in studies. 

 

Figure 8: Frontier delimited by Fisher's discriminant function. 

4 CONCLUSIONS 

Nonparametric techniques for evaluating slope stability conditions are important for 

preliminary analyzes. These techniques should not replace analyzes such as Ordinary (Fellenius, 

1936), Janbu (1954), simplified Bishop (1955), Morgenstren and Price (1965) and Spencer (1967), 

however these techniques can help in decision making in relation to a preliminary study approach. 
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The applied methodology is like that applied by Santos et al. (2018). The results are relevant 

showing that the methodology presents applicability not only on rock slopes, but also on slopes of 

soil. The applied methodology presented an overall probability of success of 89.83%, with error 

rates that favor slope safety, since the errors are related to the classification of stable slopes in 

unstable slopes. Although the methodology applied presented less overall probability of success 

when compared to the methodologies of Feng et al. 2018 and Sah et al. 1994, it is important to 

emphasize the basement of the applied techniques, in more precise studies in the relationships 

and structure of the variables based on statistical tests, analysis of variability and adequacy of 

variables. 

Therefore, as in the research by Santos et al. (2018), that motivated this research, the model 

proposed here can be used to know the slope stability condition. Furthermore, the methodology 

is also capable of predicting the most hazardous situations not only in a group of rock slopes but 

also on in variable types of slopes. 
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