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ABSTRACT

The present study shows the optimization of mineral
filler blends for use in water-based paints. The aim of
the modelling is to evaluate the possibility of creating a
model of prediction of the contrast ratio and brightness
of the dry film, where the fillers that participate in the
system are fillers used commercially by the paint
industry. The differential of the use of the mixtures
design, called Simplex, is that the predictions are made
by carrying out a linear combination between the

proportions of the mineral fillers and the response
variables. The proposed procedure consists in
generating a numerical model that can predict final
paint properties depending on the concentrations of the
mineral fillers (PCC, GCC and kaolin) used. As support for
simplex mixture design, the methods of Partial Least
Squares regression and Response Surface were used in
the calculations of the models and in the visualization of
the response variables.

PALAVRAS-CHAVE: kaolin, carbonate, simplex mixture design, brightness, mineral processing.

PREDIGCAO DE PROPRIEDADES DE TINTA BASE AGUA EM FUNGAO DE SUAS
CARGAS MINERAIS: APLICACAO DE SIMPLEX-PLSR

RESUMO

O presente estudo mostra a otimizagdo de misturas de
cargas minerais para uso em tintas base-agua. O
modelamento tem o objetivo de avaliar a possibilidade
de criar um modelo de predi¢do da razdo de contraste e
alvura da pelicula seca, onde as cargas que participam
do sistema sdo cargas usadas comercialmente pela
industria de tintas. O diferencial da utilizacdo do
planejamento de misturas, chamado Simplex, é que as
predicbes sdo feitas realizando-se uma combinagdo
linear entre as proporgdes das cargas minerais e as

variaveis de resposta. O procedimento proposto
consiste em gerar um modelo numérico que seja capaz
de prever propriedades finais da tinta, em fungdo das
concentragGes das cargas minerais utilizadas (PCC, GCC
e caulim). Como suporte ao planejamento simplex,
utilizou-se os métodos de Minimos Quadrados Parciais
e Superficie de Resposta nos cdlculos dos modelos e na
visualizagdo das varidveis de resposta.

KEYWORDS: kaolin, carbonate, simplex mixture design, brightness, mineral processing.
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1 INTRODUCTION

In general, paints consist of resins, pigments, mineral fillers, solvents, dryers and additives
(Carvalho, 2001; CETESB, 2006). There are several types of paints that use different
concentrations of pigments and fillers, these concentrations can reach up to 50wt% (Bartholi,
2001; Ciullo, 1996; Conceicdo, 2006) of the total paint, making the paint industry one of the
largest consumers of mineral fillers in the world. The pigments and fillers are ultrafine solid
particles, dispersed and insoluble in the paint. They are mainly responsible for the behaviour of
layer appearance, colour, opacity, durability and mechanical strength of paint (Wilker, 2001).
Pigments or active elements are those that provide colour and opacity. Mineral fillers or inert
elements are those that provide certain properties, such as: decrease of brightness, aid in
opacity, resistance and greater consistency (CETESB, 2006; Lambourne & Strivens, 1999). Both
the pigment and the mineral fillers are selected based on several features, such as: oil
absorption, particle size and shape, light fastness, as well as the hidden power that is strongly
influenced by factors such as refractive index (Fazenda, 1993). The mineral fillers improve the
mechanical performance and surface finish of the products and they are responsible for
important parameters in the formulation such as viscosity, hidden power, cost, etc. They are also
called functional filler or mineral extender (Conceicdo, 2006; Conceicdo, Castro, & Petter, 2006).
In Brazil, the increase in the use of mineral fillers in the paint industry occurred in 1998, when
mining companies began to follow world changes and paint manufacturers' demands for more
homogeneous products (Scigliano, 1998). Thus, by increasing in the use of the fillers in the
production of paint, it can be considered a way of reducing the cost of the formulation (Castro,
Conceicdo, & Petter, 2005; Lozasso, 2001).

Many different types of mineral fillers are used worldwide, derived from different
geological formations, most commonly used ones are talc, kaolin, mica, barite, bentonite, quartz,
diatomite, calcium carbonate (natural and precipitate) and also called those of regional like
agalmatolite, characteristic of the Brazilian geological formation and adapted to the condition of
local supply local (Occaa, 1983; Bartholi, 1998; Scigliano, 1998; Lambourne, 1999; Phillips, 1999;
Bartholi, 2001; Hare, 2001; Perez, 2001; Ciullo, 2002; Ciullo, 2003; Dalpiaz et al., 2004; Vandelbilt,
2005). According to Associacado Brasileira dos Fabricantes de Tintas [AFRAFATI] (2016), in Brazil,
in 2015, 1.318 billion liters of paint were produced. Doing a relation between average amount of
mineral filler and pigment per gallon (3.78 I) of paint, results in an estimated consumption of
672,000 tonnes of mineral fillers for the year 2015.

Most of mineral fillers are used only to reduce paint cost. The major challenge for mineral
fillers producer to show how fillers can improve specific properties of paints, besides reduce cost
(Conceicao et al, 2009). According to Petter and Conceicdo (2009) in the paint industry, mineral
fillers have a good performance if they do not suffer variations in raw material quality. Frequently
that variation in quality occurs due to differences on the mineral processing applied by the
several mineral fillers suppliers (Petter, Castro, & Concei¢do, 2005). Since, many companies work
with tinting systems that need mineral fillers with well-defined properties and without
significance variations, the lack of such homogeneity could result in significant differences in the
final properties of the paint. Therefore, any change in the supplier or properties of the raw
material may cause damage to the final product, the paint. According to Castro, Conceicdo and
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Petter (2007) to solve the problem, suppliers of mineral fillers try to adjust the fillers according to
the needs of the paint industry. In the search for this suitability, the most diverse physical-
chemical treatments are employed.

Basis of the response surface is to find the relationship between control variables and
response variables through a polynomial relationship (Bezerra et al., 2008). Moreover, second
order models, in most cases, can have a good fit and in more complex cases cubic terms are used.
In effect, using response surface involves fitting a regression model to response surface data
(Bezerra et al., 2008; Box, & Hunter, 1961). In this fit, estimating the parameters of the model are
employed methods, as, for example, Ordinary Least Squares, Bayesian and Bootstrap. Advantage
of using Partial Least Squares (PLS), in place of these methods, lies in the ability of PLS to perform
a simultaneous decomposition on the dependent and independent variables and to calculate the
regression coefficients for each dependent variable (Wold, 1973; Wold, Sjostrom, & Eriksson,
2001).

The proposal of this study is to show that the use of design of experiments of mixtures,
called Simplex, coupling a partial least squares (PLS) alternatively to common algorithms can be
used to optimize the properties of water-based paint according the mineral fillers properties
inside the paint coating.

2 MATERIALS AND METHODS

2.1 Manufacturing of paint

The laboratory paints were made in a suitable container for a total volume of % of a gallon
(900 ml), considering the complete mixture of all paint components. The paints were
manufactured using a cowles type disperser on a bench shaker. In the present study, a water-
based white paint formulation was evaluated, containing the following percentages for the
components: Resin = 11%; Pigment = 38% (8% TiO, and 30% filler); Solvent = 48.5% water and
Additives = 2.5% (dispersant, bactericide, biocide, defoamer, surfactant, thickener and
coalescent). During the tests all the paint components (resin, solvent, additives and pigments -
primary and mineral filler or functional filler) remained constant. The only changes were the type
of functional filler and combinations thereof. The applications, for subsequent measurement of
parameters such as contrast ratio and brightness, were made in Leneta type cardboards,
containing a black band, with a 100 um extender. In addition to these parameters, others were
measured as PVC (pigment volume concentration), gloss, viscosity, stability, pH. These
parameters were chosen because they represent the main qualities that a coating with protective
and decorative function should have, such as opacity, colour and stability. Since the opacity and
brightness of the film were one of the most important properties of a paint, they were chosen to
be modeled through the optimization of mixtures. The contrast ratio ranges from zero to 100 and
is related to the hidden power. Thus, a contrast ratio equal to 100 means that the paint film can
completely cover the substrate, without this influencing the reflection, that is, the colour that the
observer sees. Conversely, low contrast ratios mean that the film cannot completely cover the
substrate, so the reflectance will be influenced by the substrate. The contrast ratio (CR) has no
units and is calculated from Equation (1):
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CR(%) = %xmo (1)

Where:
Rp = reflectance of the film under the black background.

Rb = reflectance of the film under the white background.

The brightness was determined on the dry film of the paint, by reading in Datacolor
spectrophotometer Dataflash-100. The paint was applied on a white cardboard with a black strip,
type Leneta, using a 100 um thick extender.

Mineral fillers, traditionally used by the paint industry, were used in modelling (Conceicdo
& Petter, 2000). The chosen fillers were: precipitated calcium carbonate (PCC), ground calcium
carbonate (GCC) and kaolin (KAO).

2.2 Multivariate data regression — Partial Least Squares

Partial Least Squares Regression (PLS-R) is a widespread method for reducing and
combines two sets of variables (Conceicdo & Petter, 2007). PLS can fit several response variables
in an individual model by means of Nonlinear Iterative Partial Least Squares (NIPALS) algorithm
(Wold, 1969, 1973, 2001). PLS regression transforms the original variables in a set of
uncorrelated new variables and apply least squares regression on these new set. The algorithm
decomposes X and Y in a set of orthogonal factors, in this case known as latent variables, plus a
residue matrix corresponding to the non-modelled data. Latent variables, such as the main
components, can be represented as the product of the score and loading vectors or as the
product of the matrices in which these vectors were grouped. The independent variables are
decomposed as X = TP' + E with T being the scores matrix, P being the loading matrix and E being
the residue. Likewise, the dependent variables are decomposed as Y = UQ' +F and U are the
scores, Q are the loadings and F are the residue. PLS establishes the relationship between the
two data blocks by regressing the scores of the X block on the scores of the Y block using a
regression coefficient b to describe a linear function between these blocks, U = bT. Obtaining the
best correlation between these matrices, with the smallest residuals described in the matrices E
and F, the scores of the matrix T are adjusted to simultaneously describe the matrix Y. This is the
basic algorithm of the partial least squares regression, which corresponds to PLS-1. Finally, Y is
estimated for Yest = TBC' where B is the diagonal matrix of regression weights and C is weight
matrix of Y (Wold et al.,, 2001; Esbensen et al., 2002; Kettaneh et al., 2005; Concei¢do, 2006;
Mehmood et al., 2012). Some changes can be made to suit this method for different situations. In
PLS-1, only one property of interest is considered in each model. However, when there is more
than one property of interest to be calibrated using the same set of instrumental measures, the
algorithm to be employed is PLS-2, in which the matrix of scores, U, will be obtained to describe
the properties of interest simultaneously. This method is interesting in situations where the
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properties of interest are correlated. In these two cases, it is assumed that the relationship
between the data blocks X and Y is best described through a linear function. In PLS there is a
compromise between explaining the variance in X and obtaining the highest correlation with Y
(Conceicdo, 2006; Esbensen,2000; Esbensen et al., 2002; Wold, 1973; Wold, Sjostrom, & Eriksson,
2001).

2.3 Design of experiments of mixtures - Simplex

2.4 Mixture designs are used when the response variables change as a function of the
relative proportions of the components and there are different designs like Screening
and Optimal. Simplex designs were well described by Barros Neto et al. (1995), Esbensen,
(2000), Esbensen et al. (2002), Conceicdo (2006), Conceicdo et al, (2006) and Chen (2010)
and it is a special case in mixture designs and require the components sum to be the
same for all proportions. In the present study was used the Simplex Designs to optimize
final properties of a paint formulation and it means, the ternary mixture has a constraint
that X; + X, + X3 = 1, considering X as mineral fillers proportions and Y as response
variables. Equation (2) is the general representation of a mixture model:

3 3 3

A 3 303
y=b,+ Zbl.xi + ;Ebijxixj + IES 2 ;bﬁkxixjxk (2)

The parameter i in the above equation represents the response to the pure mixture, ij
binary mixtures, and ijk ternary blends.

Table 1 shows the schematic representation of the tests and Figure 1 shows the position
in the triangle representing simplex design. Assayl through Assay3 represent paints in which only
one filler has been incorporated into the formulation. About applications in practice, paints with
only one mineral filler or extender are practically absent. Despite this, these paints were made so
that it was possible to determine the effect of the charge alone on the final properties of the
paint and to better develop the model. Geometrically, the Assay4 to Assay6 are binary
compositions having equal proportions for the components and they are located on the edges of
the triangle. Assay7 through Assay9 configure combinations of the three components. These
represent points inside the triangle and they are used for model validation. Assay10 (a, b and c) is
the centroid, where the percentage of components have the same value. In three mixtures
replicates were made to have an estimate of the repeatability and to test the significance of the
adjusted coefficients. The assays were performed in a random manner in order to reduce the
effects of noise.

Table 1: Simplex design - proportions of the mixtures and their position in the triangle, b and c are replicates.

Assay Mixture Simplex X1 X, ) &
Assayl Pure Vertexla 1 0 0
Assay2 Pure Vertex2a 0 1 0
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Assay3 Pure Vertex3a 0 0 1
Assay4a Binary Edgela 0.5 0.5 0
Assay4b Binary Edgelb 0.5 0.5 0
Assay5a Binary Edge2a 0.5 0 0.5
Assay5b Binary Edge2b 0.5 0 0.5
Assay6a Binary Edge3a 0 0.5 0.5
Assaybb Binary Edge3b 0 0.5 0.5
Assay7 Ternary Axisla 0.667 0.167 0.167
Assay8 Ternary Axis2a 0.167 0.667 0.167
Assay9 Ternary Axis3a 0.167 0.167 0.667
Assay10a Ternary Centroid-a 0.333 0.333 0.333
Assay10b Ternary Centroid-b 0.333 0.333 0.333
Assay10c Ternary Centroid-c 0.333 0.333 0.333
X,(1,0,0)

X,(0,1,0) (0,1/2,1/2) X5(0,0,1)
Figure 1: Triangular diagram of the compositions showing the coordinates for the Simplex.

3 RESULTS

The simplex design for PCC, GCC and KAO is evaluated as a function of the response
variables (RV) of dry film contrast ratio (CR) and dry film brightness (BRT).

Table 2 shows the 15 paints produced with the respective control variables (percentages
of minerals - PCC, GCC and KAOQ), as well as the response variables (CR, BRT) and the results for
the simplex containing the PCC, GCC and KAO. The values for the response variables are mean
values of three measurements for each sample. The matrix X with the independent variables is
formed by the variables X;, X, and Xs, that is, the percentages of the mineral fillers inside the
paint. Likewise, the matrix Y is formed by the response variables Y; and Y5, dry film contrast ratio
and brightness.

Table 2: Simplex design with the response variables for commercial kaolin, CR = dry film contrast ratio,
BRT = dry film brightness, b = replicas, c = replica.

Assay X1 Xz X3 Y; Yz
PCC GCC KAO CR (%) BRT (%)
Vertexla 1 0 0 95.37 90.29
Vertex2a 0 1 0 68.51 83.53
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Vertex3a 0 0 1 93.40 87.69
Edgela 0.5 0.5 0 91.70 88.01
Edgelb 0.5 0.5 0 92.63 88.21
Edge2a 0.5 0 0.5 94.98 90.59
Edge2b 0.5 0 0.5 94.18 90.11
Edge3a 0 0.5 0.5 83.99 85.79
Edge3b 0 0.5 0.5 84.64 85.98
Axisla 0.667 0.167 0.167 94.77 90.27
Axis2a 0.167 0.667 0.167 82.56 85.91
Axis3a 0.167 0.167 0.667 93.16 88.61

Centroid-a 0.333 0.333 0.333 92.39 88.28

Centroid-b 0.333 0.333 0.333 91.52 87.72

Centroid-c 0.333 0.333 0.333 91.93 87.96

The proposed procedure consists of generating a numerical model, correlating the control
variables X with the response variables Y. In other words, based on the mass concentrations of
each mineral fillers the model must be able to predict final paint properties. The methodology is
developed by the application of simplex design. As support for the simplex, the Partial Least
Squares (PLS) was used to correlate the matrix X with the matrix Y and the Response Surface
Method (RSM) was used to visualize the response variables (Box & wilson, 1951; Box & Hunter,
1957, 1961; Bezerra, 2008; Myers et al., 2016). In modeling, at first it was tested a linear model
with only the pure components, but this model has no predictive accuracy and then a quadratic
model was used. However, both were not adequate to demonstrate the behavior of the response
variables. Then it was evaluated a special cubic model that showed the best fit. The reason for
this model to have predictive power is because in the special cubic model are considered the
three vertices, the three edges and their replicates and the centroid of the triangle, which is
composed of three measurements, containing equal proportions of the three components. To
verify the performance of the model, external validation was performed with three validation
points that were not part of the modeling. The points were named Axisla, Axis2a and Axis3a. The
analysis of statistical significance of the models was made using analysis of variance, Sum of
Squares, Lack of Fit test and R-Squared. Tables 3 and 4 show the model summary statistics for the
two response variables CR and BRT

Table 3 shows the select models for CR, the Quadratic model was selected because it was
the highest order polynomial where the additional terms are significant, the model was not
aliased and had insignificant lack-of-fit, maximized Adjusted R-Squared and Predicted R-Squared,
lower standard deviation (Std.Dev) and lower PRESS. In the Table 4 the same summary shows for
BRT variable. The Quadratic model was selected due to it was the highest order polynomial
where the additional terms are significant, the model was not aliased and had insignificant lack-
of-fit and maximized Adjusted R-Squared and Predicted R-Squared. In addition, both models had
the lowest value for PRESS statistic.

Table 3: Model Summary Statistics for CR

Sequential | Lack of Fit | R-Squared | Adjusted | Predicted | Std. Dev. PRESS

Source p-value p-value R-Squared | R-Squared
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Linear 0.000564 | 2.174E-05 |0.8459 0.8074 0.7263 |4.48 285.08
Quadratic | 2.333E-06 | 0.2085952 | 0.9994 0.9987 0.9946 |0.37 5.67
Spcl. Cubic | 0.208595 - 0.9996 0.9990 - 0.33 -

Table 4: Model Summary Statistics for BRT
Sequential | Lack of Fit | R-Squared | Adjusted | Predicted | Std. Dev. PRESS
Source
p-value p-value R-Squared | R-Squared

Linear 1.861E-05 | 7.494E -05 |1 0.9343 0.9179 0.8799 0.71 7.31
Quadratic | 3.627E-05 | 0.069239 |0.9992 0.9983 0.9903 |0.10 0.59
Spcl. Cubic | 0.069239 - 0.9997 0.9992 - 0.07 -

Verifying the significance of the regression coefficients, the standard deviation was
calculated or standard error for each coefficient. The calculation of the uncertainties in the
parameter estimates was developed by Conceicdo (2006). Table 5 shows the coefficients for the
two response variables with the respective standard errors and the confidence interval for them.

For the two models, since the standard error of the X;X;X5 interaction in a special cubic
model was greater than the coefficient estimate, it was chosen to leave it out of the equation
which resulted in a quadratic model as in the summary statistics.

Table 5: Statistics for the terms of CR and BRT equations

PCC GCC KAO PCC*GCC PCC*KAO GCC*KAO
X1 X, X3 X1X5 X1X3 X2X3
CR model
coef_bi CR 95.35 68.48 93.38 41.35 1.98 12.94
STDError 0.26 0.26 0.26 1.23 1.53 1.53
95%ClI - 94.68 67.82 92.71 38.19 -1.95 9.01
95%CI + 96.01 69.15 94.04 44.50 5.92 16.88
BRT model
coef _bi_BRT 90.30 83.54 87.69 4.64 6.12 0.44
STDError 0.07 0.07 0.07 0.34 0.42 0.42
95%Cl - 90.12 83.36 87.52 3.78 5.04 -0.64
95%CI + 83.72 87.88 87,10 5.51 7.19 1.51

Equations (3) and (4) represent the models for CR (special cubic) and BRT (quadratic).
Quadratic model for CR

CR,s(%) = 95.35PCC + 68.48GCC + 93.38KA0 + 41.35PCC x GCC + 1.98PCC x KAO + 12.94GCC x KAO (3)

Quadratic model for BRT

BRT,s. (%) = 90.30PCC + 83.54GCC + 87.69KA0 + 4.64PCC x GCC + 6.12PCC x KAO + 0.44GCC x KAO

(4)
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One of the great advantages of simplex design is that the constraint PCC + GCC + KAO =1
allows the response variables to be visualized on a response surface. In addition, the visualization
of the interaction between the mineral fillers is also visible. Any combinations of the three
components can be easily calculated with the equations or with the response surfaces.

Figures 2 and 3 show the response surfaces for the response variables and the design
points represent the assays in Table 2. In Figure 2, if one selects a target for CR as 90 %, for
example, combinations of the three fillers that achieve CR values above 90 % could be generated
with the mixtures that are in the reddish area of the response surface.

A: PCC (%)
5]

CR (%)
o Design Points

I95.37
68.51

1 0 1
B: GCC (%) C: KAO (%)
CR (%)

Figure 2: Response surface for CR.

The same is true for the BRT variable. If the target were values of brightness above 90%,

the combinations of fillers that should be used would be in the reddish area delimited by the line
marking 90, Figure 3.

HOLQOS, Year 34, Vol. 02 -



CONCEICAO, PETTER & SAMPAIO (2018) H l]

ISSN 1807 - 1600

A: PCC (%)
2 1

BRT (%)
o Design Points

I90,59
83.53

2.

1 0 1
B: GCC (%) C: KAO (%)

BRT (%)

Figure 3: Response surface for the dry film of BRT

3.1 Validation

The validation of the multivariate calibration model was performed based on the analysis
of the equations proposed in the calibration phase. Which certifies that the proposed model is
reliable and meets the conditions described by the statistical parameters of Table 5.

In the validation of the quadratic models for the two response variables, three samples
were evaluated. Equations (3) and (4) were used to test the predictive power of models with
samples that were not part of the calibration set. Table 6 presents the results for the validation of
the models. The values of PCC, GCC and KAO are the contribution of each component in the
mixture to make the paint. The values calculated by the models are in agreement with the
confidence interval and with the standard error that were shown in Table 5 and the Root Mean
Square Error of Prediction (RMSEP) (Conceicdo, 2006) calculated for the variables were 0.80 for
CR and 0.28 for BRT.

Table 6: Validation for three internal surface points.

PCC GCC KAO CR_pred CR_obser BRT_pred BRT_obser
0.667 0.167 0.167 95.72 94.77 89.95 90.27
0.167 0.667 0.167 83.20 82.56 86.09 85.91
0.167 0.167 0.667 92.36 93.16 88.29 88.61

3.2 Discussion

The use of design of experiments of mixtures, with the restriction that the sum of the
proportions of the participating elements is a constant, makes the properties of the mixture
essentially dependent on the proportions of the components of this mixture. The finding of the
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maximum or minimum regions of the mixture is directly linked to the synergy of the constituent
elements of the mixture and can be found by analyzing the response surfaces of each response
variable. Applying this design of experiment, the paints with single mineral filler allow to observe
the main effects of each constituent, on the other hand, the binary and ternary mixtures allow to
evaluate the interactions of these minerals. As a result, a response surface is obtained for each
paint response variable and these are functions of the mineral proportions inside the paint. The
models presented, as well as the analysis of variance (test F) and validation proved the
effectiveness of the design of mixtures. In a design of experiments, where, usually for the sake of
financial and time savings, each factor is studied only in two levels (for example, 2"), the results
can generate an imprecise conclusion of the real functional link that connects the response of the
system under study with the influencing factors. Additional information is always required.
However, it is necessary to reconcile the number of trials with cost, time and results expected to
be achieved.

The use of mixture designs can help to ensure that the lack of homogeneity in the mineral
filler is corrected using the response surface, since it provides different combinations between
the minerals that provide the same value for the response variables. The methodology can also
be used to make comparisons between results of different mixtures with different mineral loads.

For instance, the comparison between the results with mixtures involving minerals that
are not commonly employed, in order to discover minerals fillers that act as substitutes or partial
or total extenders of fillers traditionally employed.

4 CONCLUSIONS

In this study precipitated calcium carbonate, ground calcium carbonate and kaolin were
used as the mineral components of a water-based paint formulation. Through the combined use
of Partial Least Squares and Simplex Design of mixtures a model was created to relate the
amounts of the minerals to the properties of the dry film of the paint.

According to the results, it is concluded that it is possible to predict the contrast ratio and
brightness of a water-based paint based on the quantities of mineral filler used in that paint.
Using the equations of a quadratic model which represent the studied system it is possible to
predict the value of the contrast ratio and brightness for any combinations of the mineral fillers
used. Besides that, applying this methodology one can observe the main effects of each mineral
and the binary and ternary interactions. In addition, it is possible optimize the results of all
responses at the same time. Thus, saving time, because with few assays it is possible to define a
very large number of combinations of the same fillers that generate different final characteristics
for the paint, and with that there is a reduction of costs.
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