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ABSTRACT 
 
This article demonstrates the successful application of 
Long Short-Term Memory (LSTM) recurrent neural 
networks to simulate streamflow in the Aquidauana River 
basin, located in the Brazilian Pantanal. The LSTM 
network used daily precipitation data as input to predict 
future streamflow in the region. The results obtained 
from this research show a coefficient of determination 
(R2) of 0.82, indicating a strong fit of the model to the 
observed data. Additionally, the Root Mean Squared 
Error (RMSE) was found to be 0.53, indicating the model's 

accuracy in predicting streamflow compared to actual 
data. These findings highlight the effectiveness of LSTM 
networks in hydrological modeling for the Pantanal 
region, which is crucial for water resource planning and 
sustainable management in this ecologically significant 
area. This study is expected to serve as a catalyst for 
further research and make a substantial contribution to 
the advancement of streamflow prediction techniques in 
complex watersheds such as the Aquidauana River basin. 
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REDES DE MEMÓRIA DE LONGO E CURTO PRAZO (LSTM) PARA PREDIÇÃO DE 
FLUXO DE RIO NA BACIA DO PANTANAL BRASILEIRO 

RESUMO 
Este artigo mostra uma aplicação bem-sucedida de rede 
neural recorrente - Long Short-Term Memory (LSTM), 
para simular a vazão na bacia do rio Aquidauana, dentro 
dos limites do Pantanal brasileiro. Os dados diários de 
precipitação serviram como variáveis de entrada para 
permitir que a rede LSTM previsse o fluxo futuro na 
região. Os resultados obtidos demonstram um 
coeficiente de determinação (R2) de 0,82, indicando um 
ajuste favorável do modelo aos dados observados, 
juntamente com um erro quadrático médio (RMSE) de 

0,53, demonstrando precisão na previsão do modelo em 
comparação com a vazão real. Tais métricas ressaltam a 
eficiência das redes LSTM para modelagem hidrológica na 
região do Pantanal, um aspecto crucial para o 
planejamento e gestão sustentável dos recursos hídricos 
na área. Espera-se que este estudo inspire novas 
pesquisas e contribua significativamente para o avanço 
das técnicas de previsão de vazões em bacias 
hidrográficas complexas e com deficiência de dados, 
como a bacia do Rio Aquidauana. 
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1 INTRODUCTION 

The Pantanal, located at the heart of South America, stands as the largest floodplain in the 
world. This region is renowned not only for its exceptional ecological diversity but also for its critical 
contribution to the regulation of regional hydrology (Assine et al., 2016; Couto & Oliveira, 2010; 
Macedo et al., 2014). Among the numerous rivers that weave through this vast wetland, the 
Aquidauana River plays a significant role in preserving the delicate equilibrium of the Pantanal 
ecosystem. It is an intricate web of rivers, marshes, and diverse habitats, providing a haven for 
countless species of wildlife. The comprehension and precise modeling of river flow within this 
region are of paramount significance for the management of water resources, flood control, and 
environmental conservation (Joia et al., 2018). 

However, despite the ecological importance of the Pantanal, there exists a notable 
challenge - the scarcity of hydrological data. This shortage of data presents a formidable obstacle 
to the development of reliable river flow models. In particular, remote and less accessible areas of 
the Pantanal lack comprehensive hydrological observations. This scarcity impedes conventional 
modeling approaches, emphasizing the need for innovative techniques capable of capturing the 
intricate spatiotemporal dynamics of river flow. To address these limitations, this study embraces 
the capabilities of Long Short-Term Memory (LSTM) networks, a class of recurrent neural networks 
renowned for their proficiency in capturing sequential patterns and long-range dependencies (J. 
Fan et al., 2018; Kratzert et al., 2018; T. Liu et al., 2019). 

The central aim of this investigation is to employ LSTM for modeling river flow within the 
Aquidauana River Basin, with precipitation data serving as a critical input variable. The LSTM model 
will be trained to learn the historical correlations between precipitation patterns and river flows, 
facilitating the generation of accurate flow predictions even during periods with limited available 
data. By utilizing LSTM, the study not only achieves precise river flow modeling but also offers a 
means to fill missing data gaps, a vital consideration given the scarcity of hydrological records in 
the Pantanal region. 

This manuscript outlines the methodology employed for preprocessing and integrating the 
available hydrological and precipitation data. The process involves collecting and organizing 
historical data pertaining to river flow and precipitation within the Aquidauana River Basin. The 
data undergoes normalization, ensuring it is standardized on a common scale, which is essential 
for the LSTM model to function effectively. Subsequently, the LSTM architecture and training 
procedure are comprehensively detailed, providing insights into the neural network's inner 
workings and how it processes data sequences. 

The research goes further by evaluating the LSTM model's proficiency in capturing the 
spatiotemporal fluctuations of river flow within the Aquidauana River Basin. This evaluation aims 
to demonstrate how well the LSTM network can adapt to the unique hydroclimatic conditions of 
the Pantanal region and provide accurate predictions. Additionally, a comparative analysis will be 
conducted, contrasting the LSTM's predictions with those generated by traditional hydrological 
models. This comparative assessment will determine the efficacy of LSTM in managing data 
limitations and capturing intricate hydrological dynamics. 
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In conclusion, this study represents a significant advancement in the realm of hydrological 
modeling within the Pantanal region. It showcases the capabilities of LSTM networks in effectively 
utilizing limited hydrological data for river flow prediction and data gap filling. The provision of 
precise river flow simulations through this research can significantly contribute to well-informed 
decision-making processes concerning sustainable water resource management, environmental 
preservation, and flood control initiatives in the Pantanal. These are critical aspects of maintaining 
the ecological balance and safeguarding the biodiversity of this unique region. 

Moreover, the insights gained from the utilization of LSTM in addressing data scarcity 
challenges can offer valuable implications for analogous circumstances in other regions globally. 
The approach taken in this study can be a blueprint for addressing data limitations in hydrological 
modeling across various ecosystems, providing an innovative solution for regions where traditional 
data collection may be challenging. LSTM networks, with their ability to capture long-range 
dependencies, have the potential to revolutionize the field of hydrology, enabling more accurate 
predictions and better management of water resources in ecologically sensitive areas like the 
Pantanal. This research not only furthers our understanding of the Pantanal's hydrology but also 
offers a promising path towards sustainable management of water resources in other vulnerable 
regions worldwide. The contribution of LSTM networks to hydrological modeling is a step towards 
a more resilient and ecologically conscious approach to water resource management, with 
implications far beyond the Pantanal. 

2 BIBLIOGRAFIC REVIEW 

2.1 Hydrological Modeling in Wetland Ecosystems 

The Pantanal, situated at the core of South America, is a remarkable example of a wetland 
ecosystem characterized by its dynamic hydrological processes. Wetlands, such as the Pantanal, 
are unique ecosystems that serve as vital ecological hubs and are often referred to as the Earth's 
"kidneys" due to their role in water purification and regulation (Couto & Oliveira, 2010). These 
regions are particularly susceptible to the impacts of climate change, as alterations in precipitation 
patterns and temperature can significantly influence the hydrology of wetlands (Cui et al., 2021; S. 
M. Mohammadizadeh, Filho, Descovi, Murillo-Bermúdez, & Sierra, 2023; Murillo Bermudez et al., 
2023; Sierra et al., 2023). Consequently, accurate hydrological modeling is indispensable for 
understanding the response of wetland ecosystems to environmental changes, ensuring their 
conservation, and supporting the communities dependent on these regions for their livelihoods. 

Wetlands are characterized by their fluctuating water levels, which are influenced by 
various factors, including precipitation, evapotranspiration, groundwater interactions, and the 
intricate network of rivers and channels. River flow within wetlands is not only critical for the 
ecological balance of these regions but also plays a crucial role in nutrient cycling and supporting 
diverse wildlife (Back et al., 2023; Xi et al., 2021). The Pantanal, with its vast floodplain and 
extensive network of rivers, exemplifies the intricate interplay between wetland hydrology and 
ecosystem health. Therefore, gaining insights into the hydrological dynamics of the Pantanal, and 
wetlands in general, is essential for sustainable environmental management, particularly in the 
face of changing climate conditions. 
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Furthermore, the challenges associated with hydrological modeling in wetland ecosystems 
are multifaceted. These regions often lack comprehensive hydrological data, especially in remote 
areas. Traditional modeling approaches, which rely heavily on historical observations and well-
established statistical methods, may be insufficient to capture the complexity of wetland hydrology 
(Kratzert et al., 2018). The incorporation of innovative techniques, such as advanced machine 
learning algorithms like Long Short-Term Memory (LSTM) networks, becomes imperative to bridge 
the gaps in our understanding of wetland hydrology. LSTM networks, with their ability to capture 
sequential patterns and adapt to changing conditions, offer promising solutions for modeling the 
intricate and dynamic nature of river flow within wetland ecosystems. 

2.2 Long Short-Term Memory (LSTM) Networks 

In recent years, Long Short-Term Memory (LSTM) networks have emerged as a powerful 
tool in the realm of artificial intelligence and machine learning, particularly for modeling time-
dependent data. LSTMs belong to the class of recurrent neural networks (RNNs) but possess a 
unique architecture that addresses one of the key challenges in sequential data analysis: the 
vanishing gradient problem (Hochreiter & Schmidhuber, 1997). This problem occurs when 
traditional RNNs struggle to capture long-term dependencies in sequential data, making them less 
suitable for tasks that require remembering information over extended time periods. LSTMs were 
designed to overcome this limitation, making them well-suited for applications in time series 
forecasting, natural language processing, and, notably, hydrology. 

At the core of an LSTM network is the memory cell, which can store information over 
extended time steps and selectively retain or forget information as it processes sequential data. 
This memory cell is complemented by three gates: the input gate, the forget gate, and the output 
gate. These gates control the flow of information into and out of the memory cell, allowing the 
LSTM to capture and retain relevant patterns and context while discarding less important 
information (Mohammadizadeh et al., 2023; Yu et al., 2019). This architecture makes LSTMs highly 
adept at modeling sequences with varying time lags, making them particularly valuable for 
applications where past observations significantly influence future outcomes, such as river flow 
modeling. 

In the context of hydrology, where time series data plays a central role, LSTMs offer several 
advantages over traditional statistical models (Fan et al., 2021; Gavidia, Mohammadizadeh, et al., 
2023; Kratzert et al., 2019; Lees et al., 2021; Nikeghbali et al., 2014; Xiang et al., 2020). They can 
capture complex, non-linear relationships between input variables, such as precipitation patterns, 
and the target variable, such as river flow. Additionally, LSTMs can adapt to changing patterns and 
seasonality in the data, making them versatile for modeling hydrological processes influenced by 
climate, weather, and other factors. Their ability to handle irregular time intervals and missing data 
further enhances their utility in hydrological modeling, especially in regions with limited data 
availability, like the Pantanal (Assine et al., 2016). 

As a result, the application of LSTM networks to hydrology has gained considerable 
attention in recent research (Descovi et al., 2023; Gavidia, Chinelatto, et al., 2023; Kratzert et al., 
2018; Li et al., 2023; S. Mohammadizadeh et al., 2021; S. M. Mohammadizadeh, Filho, Descovi, 
Murillo-Bermúdez, & Sierra, 2023; Sahoo et al., 2019). Researchers have leveraged LSTM models 
to improve the accuracy of river flow forecasting, flood prediction, and the understanding of 
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complex hydrological phenomena (Liu et al., 2020). The inherent ability of LSTMs to capture both 
short-term fluctuations and long-term dependencies in hydrological data aligns with the challenges 
posed by wetland ecosystems like the Pantanal, where river flow is influenced by multiple 
interacting factors and exhibits intricate spatiotemporal dynamics. Therefore, the integration of 
LSTM networks into the study of river flow within the Pantanal presents a promising avenue for 
enhancing our understanding of this vital ecosystem. 

3 METHODOLOGY 

3.1 Study Area and Data Collection 

 The study area of significant hydrological importance pertains to the Aquidauana River 
Basin, a region located within the vast Pantanal, an extensive tropical wetland nestled at the 
geographical heart of South America. The Pantanal primarily spans across the Brazilian states of 
Mato Grosso and Mato Grosso do Sul, extending into portions of Bolivia and Paraguay. Covering 
an estimated area ranging from approximately 150,000 to 195,000 square kilometers, the Pantanal 
stands as the largest freshwater wetland on a global scale. It assumes a pivotal role as an ecological 
hotspot and an invaluable natural resource of great significance. 

 The Aquidauana River, one of the numerous rivers coursing through the Pantanal, holds a key 
position in shaping the region's hydrological dynamics. Serving as a tributary of the Paraguay River, 
a major river in South America, the Aquidauana River substantially influences the overall flow and 
water regime of this intricate wetland. The river basin encompasses a diverse and intricate 
landscape, featuring wetlands, savannas, and tropical forests. The basin's topography, in 
conjunction with its tropical climate, gives rise to a complex hydrological system characterized by 
seasonal variations that include periods of flooding and drought. 

 The hydrographic basin of the Aquidauana River (as illustrated in Figure 1) constitutes a 
sub-basin of the Miranda River, itself one of the tributaries of the Paraguay River. Geographically, 
it is situated between the latitudes of 19° 19' 01'' and 21° 13' 49'' south, and the longitudes of 56° 
49' 11'' and 54° 16' 44'' west. This basin is located in the north-central-western part of the state 
of Mato Grosso do Sul, stretching from the Maracaju Mountain Range, positioned within the 
municipality of São Gabriel do Oeste, to the expansive Pantanal plain, where it converges with 
the Miranda River within the municipal boundaries of Aquidauana. 
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Figure 1: Location map of the Aquidauana River watershed. 

The assessment of pluviometric stations encompassing the specified area was conducted 
using the database sourced from the NATIONAL WATER AGENCY (ANA, 2022), and the outcomes 
are outlined in Table 1. The survey identified a total of 6 pluviometric monitoring stations and 1 
fluviometric monitoring station within the defined region. 

Table 1 - Pluviometric Monitoring Stations within the Delimited Area. 

 ID Name Location (MS) Monitoring station 
1 1956003 Entre Rios Aquidauana  Precipitation 
2 02055002 Palmeiras Dois Irmãos do Buriti Precipitation 
3 02054009 Santa Elisa Terenos Precipitation 
4 02054019 Jaraguari Jaraguari Precipitation 
5 01954002 Rochedo Rochedo Precipitation 
6 2155001 Nioaque Nioaque Precipitation 
7 66950000 Porto Ciriaco Aquidauana FLOW 

3.2 Long Short-Term Memory (LSTM) network 

The LSTM network belongs to a distinct class of recurrent neural networks (RNNs), 
surpassing the constraints of conventional RNNs in effectively learning long-term dependencies. 
Initially proposed by Hochreiter and Schmidhuber (1997) and subsequently refined and 
popularized by Kawakami (2008), LSTM leverages its deep learning architecture to determine the 
timing for information retention and forgetting, accomplished through purposefully designed 
gates and memory cells (Figure 2). 
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Figure 2 - The architecture of the LSTM cell. Source: FAN et al., (2018). 

The key to LSTM is the cell state (Ct), which allows information to flow unchanged. The LSTM 
memory cell is regulated by three gates that optionally allow the passage of information. The first 
gate is called the forget gate, which controls which elements of the cell's previous state Ct-1 will be 
forgotten. 

𝑓! = 𝜎$𝑊" ∙ [ℎ!#$, 𝑥!] 	+ 	𝑏"/ (1) 

Where ft is an output vector from the sigmoid layer with values ranging from 0 to 1, 
indicating the degree of forgetting. Wf and bf define the set of trainable parameters for the forget 
gate. 

Next, the input gate decides which value will be updated: 

𝑖! = 𝜎(𝑊% ∙ [ℎ!#$, 𝑥!] 	+ 	𝑏%)			 (2) 

Where it is an output variable with a value ranging from 0 to 1. Wi and bi are trainable 
parameters. Next, a candidate vector for the cell state is calculated using the current input (xt) and 
the last hidden state (ht-1): 

Ĉ = 𝑡𝑎𝑛ℎ(𝑊& ∙ [ℎ!#$, 𝑥!] 	+ 	𝑏&) (3) 

Where Ĉ is a vector with values ranging from 0 to 1, tanh is the hyperbolic tangent function, 
and Wc and bc are trainable parameters. After that, you can update the old cell state Ct−1 to the 
new cell state Ct by element-wise multiplication: 

𝐶! =	𝑓! 	 ∙ 	𝐶!#$ +	𝑖! ∙ 	Ĉ! (4) 

Finally, the output gate decides what will be the output through a sigmoid layer: 

𝑜! = 𝜎(𝑊' ∙ [ℎ!#$, 𝑥!] 	+ 	𝑏') (5) 
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In this way, ot is a vector with values ranging from 0 to 1. Wo and bo are trainable parameters 

defined for the output gate. The new hidden state ht is then calculated by combining Equations 5 

and 6: 

ℎ! =	𝑜! 	 ∙ tanh(𝐶!)			 (6) 

3.3 Adjustments to the size of the LSTM window 

The quantity of preceding time steps is denoted as the window size, and this parameter 
exerts significant influence on prediction accuracy, necessitating careful selection to optimize the 
model's performance. In the present investigation, the window size is set to 5. 

3.4 Adjustments to the hyperparameters 

Neural networks conventionally encompass numerous hyperparameters, which are 
predefined prior to the commencement of the learning process. The optimization or tuning of 
these hyperparameters involves the search for a specific set of values that yield a model minimizing 
the loss function on the given data (GOODFELLOW; BENGIO; COURVILLE, 2016). In this study, the 
mean squared error (MSE) is employed as the loss function for hyperparameter optimization, 
following the work of Kratzert et al. (2018) and Fan et al. (2020). 

Frequently encountered hyperparameters comprise the learning rate, the number of 
training epochs, the dimensionality of the output space, among others (GOODFELLOW; BENGIO; 
COURVILLE, 2016). The learning rate is a hyperparameter that signifies the step size in a gradient 
descent method (ZEILER, 2012). In this study, the Adam optimizer was employed as a stochastic 
optimization method (KINGMA; BA, 2017), with an initial learning rate set to 0.2. Additionally, a 
time-based decay rate was applied to update the learning rate during the training process. 

Moreover, the number of epochs, typically denoting a complete pass through the entire 
dataset within the neural network, is employed to partition the training into discrete phases. 
Prolonged training can result in overfitting, wherein the model learns patterns exclusive to the 
training dataset (FAN et al., 2020). Conversely, insufficient training can lead to underfitting, 
signifying that the model fails to capture relevant patterns within the training data (GOODFELLOW; 
BENGIO; COURVILLE, 2016). 

In this study, the number of training epochs will be set to 30, following the recommendation 
provided by Kratzert et al. (2018). 

3.5 Validation of the LSTM model 

The metrics used to evaluate the model's performance are the Coefficient of Determination 
(R2) and the Root Mean Squared Error (RMSE). The calculation of R2 is done using the equation: 

𝑅( = 1 −
∑(𝑦% − ŷ)(

∑(𝑦% − ý)(
	 (7) 

The calculation of RMSE (Root Mean Squared Error) is done using the following procedure: 
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𝑅𝑀𝑆𝐸 = G∑ (𝑦% − ŷ)()
%*$

𝑛 	 (8) 

Where: 

• yi is the observed flow at time i. 
• ŷ is the simulated flow at time i. 
• ý is the mean value of the observed flow data (average of yi). 
• n is the number of data points in the dataset. 

4 RESULTS AND DISCUSSION 

In this section, we present the outcomes of our study, which focused on harnessing the 
capabilities of the Long Short-Term Memory (LSTM) network to unravel the underlying patterns 
in historical time series data, particularly within the context of the Aquidauana River basin. Our 
methodology involved the utilization of daily precipitation data, denoted as y(t), as the input 
variable, and flow data, represented by x(t), as the target output variable. The temporal scope of 
our study encompassed the extensive period between January 1, 1999, and December 27, 2019, 
yielding a substantial dataset comprising 7,670 data samples. 

4.1 Data Preprocessing  

Normalization emerged as a pivotal preprocessing step aimed at standardizing the data on 
a common scale. The flow data underwent normalization, which involved rescaling it to a range 
between 0 and 1 or transforming it to have a mean of zero and a standard deviation of one. This 
normalization process played a pivotal role in stabilizing the training of our LSTM network, 
especially when dealing with variables that exhibit significant differences in magnitudes. 
Furthermore, we divided the dataset into training and validation subsets, adopting a 75/25 split 
ratio, where 75% of the normalized data was earmarked for training, and the remaining 25% for 
validation (Table 2 provides an overview of this partitioning). 

Table 2 – Data division for training and testing. 

 Data Samples Percentage 
(%) 

 Training 5.752 75 
 Testing 1.918 25 
 Total 7.670 100 
    

Following the data preprocessing steps, our LSTM network underwent the training process, 
which was assessed by monitoring the Mean Squared Error (MSE) for both the training and 
validation datasets (Figure 3). The plotted data indicated that the model converged to an 
approximately constant MSE value during training, with no significant increase as training epochs 
progressed. This consistent behavior for both training and validation data points toward a smooth 
training process without any notable anomalies. The stability and minimal MSE values strongly 
affirm the model's proficiency and its ability to effectively capture data patterns. 
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Figure 3 – Graph of the training epochs number. 

4.2  Data Preprocessing  

Upon completion of the training phase, we assessed the model's efficacy in flow prediction 
using the validation dataset. The validation process involved generating input-output sequences 
from the dataset, resulting in 1918 validation samples. The model's prediction mechanism relied 
on the sequences generated, producing output samples representing the target variable - in this 
case, the flow for the subsequent day. In this manner, the model was consistently supplied with 
the original data, with the primary objective of forecasting the target variable for the next day. 

The simulation represented one-step-ahead predictions generated by the trained model. 
Input data sequences from pluviometric stations were fed into the model, enabling it to generate 
the subsequent flow sample, as depicted in Figure 4. 

 Figure 
Figure 4 – Graph of the LSTM model results in the Aquidauana basin. 
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4.3  Model Performance 

The performance of our LSTM model was rigorously evaluated using two key metrics: the 
coefficient of determination (R2) and the Root Mean Squared Error (RMSE). R2 is a commonly used 
metric for assessing the model's fit to observed data, while RMSE quantifies the accuracy of the 
model's predictions compared to actual data. These metrics capture the proportion of the total 
variance in the dependent variable (simulated flows) that can be attributed to the independent 
variables (precipitation data). 

 
Figure 5 – R2 value of 0,82. 

The R2 value of 0.82 signifies that approximately 82% of the variability observed in the 
simulated flows can be explained by the fluctuations in the precipitation data used as input for 
the LSTM model (Figure 5). A higher R2 value indicates a more favorable fit of the model to the 
observed data, indicating a closer alignment between the model's predictions and the actual 
values. However, it is crucial to consider the specific application and context when interpreting 
the R2 value accurately. 

In conclusion, our results demonstrate the effectiveness of the LSTM network in modeling 
and predicting streamflow, offering a valuable tool for hydrological analysis in the Aquidauana 
River basin. This research not only contributes to the understanding of hydroclimatic relationships 
but also provides a robust framework for sustainable water resource management in complex 
watersheds. Further research could explore alternative neural network architectures and assess 
the model's performance under various climatic conditions to refine and extend these findings. 

5 CONCLUSION 

This study has successfully harnessed the power of the Long Short-Term Memory (LSTM) 
recurrent neural network to predict streamflow within the Aquidauana River basin, using daily 
precipitation data as its input variables. The impressive results we have obtained, exemplified by 
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an R2 value of 0.82 and an RMSE of 0.53, signify a remarkable alignment between our LSTM model 
and the observed streamflow data. 

The key advantage of LSTM lies in its capability to capture long-term dependencies between 
precipitation and streamflow time series, enabling highly accurate predictions of future 
streamflows. The model's robust performance and its ability to discern and retain intricate 
temporal patterns highlight its suitability for a range of hydrological modeling tasks. 

The practical significance of our approach is underscored by its critical role in providing 
precise streamflow predictions, a crucial component of sustainable water resources planning and 
management within complex watersheds. By integrating daily precipitation data with advanced 
machine learning techniques, our methodology emerges as a valuable asset in improving 
hydrological monitoring and decision-making, particularly in the face of intricate hydroclimatic 
conditions. 

The practical significance of our approach is underscored by its critical role in providing 
precise streamflow predictions, a crucial component of sustainable water resources planning and 
management within complex watersheds. By integrating daily precipitation data with advanced 
machine learning techniques, our methodology emerges as a valuable asset in improving 
hydrological monitoring and decision-making, particularly in the face of intricate hydroclimatic 
conditions.In summary, this study constitutes a significant step forward in the application of LSTM 
networks for streamflow prediction using daily precipitation data. We hope that our findings will 
not only inspire further scholarly investigation but also encourage the practical adoption of this 
methodology to enhance water resource management across a wide spectrum of watersheds. 
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