TRANSESTERIFICATION REACTIONS WITH Mg0/I2 FOR THE SYNTHESIS OF SITOPHILATE, (2R*, 3S*) 1-ETHYLPROPYL-2-METHYL-3-HYDROXYPENTANOATE, AN AGGREGATION PHEROMONE FOR SITOPHILUS GRANARIUS LINNAEUS, 1785 (COLEOPTERA: CURCULIONIDAE)

Johnnatan Duarte de Freitas, Alan John Duarte de Freitas, Cristian Bernardo da Silva, Jeniffer McLaine Duarte de Freitas, Henrique Fonseca Goulart, Jonas dos Santos Sousa, Fernando Antônio Santos Coelho, Antônio Euzébio Goulart Santana

Resumo


A preocupação em minimizar os impactos ambientais ocasionado pelo uso de agrotóxicos na agricultura tem levado pesquisadores a desenvolver novos métodos de controle de pragas. Assim, a tecnologia baseada no uso de feromônios tem se destacado por serem substâncias altamente específicas, ou seja, agem apenas sobre indivíduos de uma mesma espécie. Neste contexto, descrevemos a síntese do sitofilato, feromônio de agregação do Sitophilus granarius, uma importante praga de grãos de cerais armazenados. O sitofilato foi obtido através da transesterificação do 2-metil-3-oxopentanoato de metila com 3-Pentanol mediada por Mg0/I2, com posterior redução do grupo cetona do 2-metil-3-oxopentanoato de 1-etilpropila utilizando NaBH4 na presença de um ácido de Lewis (ZnCl2, MgCl2, CaCl2 e MnCl2). Os resultados experimentais mostraram que o MnCl2 é o mais efetivo para a formação dos diastereoisômeros syn, uma vez que estes compostos são os que exercem atividade biológica no inseto.


Palavras-chave


Síntese; feromônio; sitofilato; Sitophilus granarius; beta-cetoésteres

Texto completo:

PDF (English)

Referências


BARCO, A., BENETTI, S., POLLINI, G.P., BARALDI, P.G., GANDOLFI, C. A new, elegant route to a key intermediate for the synthesis of 9(0)-methanoprostacyclin. J. Org. Chem., v.45, n.23, p.4776–4778, 1980.

BECKET, D., BRODSKY, N.C., KALO, J. Structure relation of conjugated cycloalkenones and their ketals. J. Org. Chem., v.43, n.13, p.2557–2562, 1978.

BERGMANN, J., VILLAR, J., ZARBIN, P.H.G. Synthesis of pheromones: Highlights from 2005-2007. Current Organic Chemistry, v. 13, p.683-719, 2009.

BO, W., MING, Y.L., SHUAN, S.J. Ionic liquid-regulated sulfamic acid: chemoselective catalyst for the transesterification of β-keto esters. Tetrahedron Letters, v.44, n.27, p.5037–5039, 2003.

CHAMBERS, J., VAN WYK, C.B., WHITE, P.R., GERRAD, C.M., MORI, M. Grain Weel, Sitophilus granarius (L.): Antennal and behavioral responses to male-produced volatiles. J. Chem. Ecol., v.22, n.10, p.1639-1653, 1996.

CHAVAN, S.P.; ZUBAIDHA, P.K.; DANTALE, S.W.; KESHAVARAJA, A.; RAMASWAMY, A.V.; RAVINDRANATHAN, T. Use of solid superacid (sulphated SnO2) as efficient catalyst in tacile transesterification of keto esters. Tetrahedron Letters, v.37, n.2, p.233-236, 1996.

CHAVAN, S. P.; SHIVASANKAR, K; SIVAPPA, R.; KALE, R. Zinc mediated transesterification of -ketoesters and coumarin synthesis. Tetrahedron Letters, v.43, p. 8583-8586. 2002.

CHONG, J.M. Enahtioselective synthesis of sitophilate, the granary weevil aggregation pheromone. Tetrahedron, v.45, n.3, p.623-628, 1989.

CORDOVA, A., JANDA, K.D. A Highly Chemo- and Stereoselective Synthesis of β-Keto Esters via a Polymer-Supported Lipase Catalyzed Transesterfication. J. Org. Chem. v.66, n.5, p.1906-1909, 2001.

CRAM, D.J., ELHAFEZ, F.A.A. Studies in Stereochemistry. X. The Rule of “Steric Control of Asymmetric Induction” in the Syntheses of Acyclic Systems. J. Am. Chem. Soc., v.74, p.5828–5835, 1952.

DHAKE, K.P., TAMBADE, P.J., QURESHI, Z.S., SINGHAL, R.S., BHANAGE B.M. HPMC-PVA Film Immobilized Rhizopus oryzae Lipase as a Biocatalyst for Transesterification Reaction. ACS Catalysis, v.1, n.4, p.316–322, 2011.

EVANS, D.A.; ALLISON, B.D.; YANG, M. G., MASSE, C.E. The exceptional chelating ability of dimethylaluminum chloride and methylaluminum dichloride. The merged stereochemical impact of α- and β-stereocenters in chelate-controlled carbonyl addition reactions with enolsilane and hydride nucleophiles. J. Am. Chem. Soc., v.123, n.44, p.10840-10852, 2001.

FREITAS, J.D., CAVALCANTE, S.K.M., SANTOS, E.D., FREITAS, A.J.D., ANTUNES, L.O., FREITAS, M.L., GOULART, H.F., SANT`ANA, A.E.G. Padronização da síntese dos principais constituintes feromonais de insetos dos gêneros Metamasius e Rhynchophorus. Holos, v.2, p.15–27, 2011.

GAIR, J.J., YOUNG, A.J., SCEPANIAK, J.J., SIMONE, P.M., CHAU, C.T., PETERSON, A.A., FERGUSON, E.M.N., OLOO, W.N., WELNA, D.T., SIVERSON, J.I., STAHL, L.M., SCHALLER, C.P. Reaction of a polyphosphino ruthenium(II) acetate complex with

Grignard reagents: Halogenation, alkylation and b-elimination. Journal of Organometallic Chemistry, v.801, p.42-47, 2016.

GIL, S., PARRA, M., RODRIGUEZ, P., SOTOCA, E. New Synthesis of (±)-Sitophilate Using Carboxylic Acid Dianion Methodology - A Stereoselectivity Study. Synthesis, n.19, p.3451–3455. 2005.

GOLDBACH, M., DANIELI, E., PERLO, J., KAPTEIN, B., LITVINOV, V. M., BLÜMICH, B., ASANOVA, F., DUCHATEAU, A.L.L. Preparation of Grignard reagents from magnesium metal under continuous flow conditions and on-line monitoring by NMR spectroscopy. Tetrahedron Letters, v.57, p.122–125, 2016.

GRIGNARD, V. Comptes Rendus de l’Academie des Sciences, Paris, v.130, II 33, 130, p.1322-1324, 1900.

HOLMQUIST, C.R., ROSKAMP, E.J. The conversion of olefins to β-keto esters: Ozonolysis of olefins followed by in situ reduction with tin(II) chloride in the presence of ethyl diazoacetate. Tetrahedron Letters, v.31, n. 35, p.4991-4994, 1990.

IWASAKI, T., MAEGAWA, Y., HAYASHI, Y., OHSHIMA, T., MASHIMA, K. Transesterification of Various Methyl Esters Under Mild Conditions Catalyzed by Tetranuclear Zinc Cluster. J. Org. Chem., v.73, n.13, p.5147-5150, 2008.

KALAITZAKIS, D., KAMBOURAKIS, S., ROZZELL, D.J., SMONOU, I. Stereoselective chemoenzymatic synthesis of sitophilate: a natural pheromone. Tetrahedron Asymmetry, v.18, p.2418-2426, 2007.

KALAITZAKIS, D.; SMONOU, I. A Convenient Method for the Assignment of Relative Configuration of Acyclic α-Alkyl-β-hydroxy Carbonyl Compounds by 1H NMR. J. Org. Chem., v.73, n.10, p.3919–3921, 2008.

KIM, K.Y., KIM, D.Y. Catalytic Enantioselective Alkylation of beta-keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex. Bulletin of the Korean Chemical Society, v.7, p.5-6, 2016.

KLIPA, D.K., HART, H. Synthesis of bicyclo[3.3.0]oct-1(2)-en-3-one. J. Org. Chem., v.46, n.13, p.2815-28-16, 1981.

LIU, H., CHEN, J., CHEN, L., XU, Y., GUO, X., FANG, D. Carbon Nanotube-Based Solid Sulfonic Acids as Catalysts for Production of Fatty Acid Methyl Ester via Transesterification and Esterification. ACS Sustainable Chemistry & Engineering, v.12, 2016.

MA, X., ABLAJAN, K., OBUL, M., SEYDIMEMET, M., RUZI, R., LI, W. Facial one-pot, three-component synthesis of thiazole compounds by the reactions of aldehyde/ketone, thiosemicarbazide and chlorinated carboxylic ester derivatives. Tetrahedron, v.72, n.18, p.2349-2353, 2016.

MATEUS, C.R.; FELTRIN, M.P.; COSTA, A.M.; COELHO, F., ALMEIDA, W.P. Diastereoselectivity in heterogeneous catalytic hydrogenation of Baylis–Hillman adducts. Total synthesis of (±)-sitophilate. Tetrahedron, v.57, n.32, p. 6901-6908, 2001.

MENGEL, A., REISER, O. Around and beyond Cram's Rule. Chemical Reviews, v.99, n.5, p.1191–1224, 1999.

MINAMI, O. YOSHIHARU, Y., KAZUO, N. Asymmetric alpha-amination of beta-keto esters using a guanidine-bisurea bifunctional organocatalyst. Beilstein Journal of Organic Chemistry, v.12, p.198-203, 2016.

MORI, K., ISHIKURA, M. Pheromone Synthesis, CXVII Synthesis of Sitophilate, the Aggregation Pheromone of Sitophilus granarius L., and Its Antipode. Liebigs Annalen der Chemie, v.1989, n.12, 13, p.1263–1265, 1989.

NAGANAWA, Y., KOMATSU, H., NISHIYAM, H. Zinc-catalyzed Enantioselective Electrophilic Amination of β-Ketocarbonyl Compounds with Axially Chiral Phenanthroline Ligands. Chemistry Letters, v.44, p.1652–1654, 2015.

NOVACEK, J., MONKOWIUS, U., HIMMELSBACH, M., WASER, M. Asymmetric alpha-chlorination of beta-keto esters using bifunctional ammonium salt catalysis. Monatshefte Fur Chemie, v.147, n.3, p.533-538, 2016.

PANDEY, R.K., KUMAR, P. A facile procedure for transesterification of β-keto esters promoted by ceria-yttria based Lewis acid catalyst. Catalysis Communications, v.8, n. 7, p.1122-1125, 2007.

PHILLIPS, J.K., MILLER, S.P.F., ANDERSEN, J.F., FALES, H.M., BURKHOLDER, W.E. The chemical identification of the granary weevil aggregation pheromone. Tetrahedron Letters, v.28, n.49, p.6145-6146, 1987.

PUNTAMBEKAR, H.M., NAIK, D.G. Geotrichum candidum Assisted Synthesis of Sitophilate, Male Aggregation Pheromone of Granary Weevil. Synthetic Communications, v.28, n.13, p.2399–2406, 1998.

RAFIEE, E., EAVANI, S. Polyoxometalate-based acid salts with tunable separation properties as recyclable Brönsted acid catalysts for the synthesis of β-keto enol ethers. Catalysis Communications, v.25, n.5, p. 64-68, 2012.

RAVIA, S.P., R, MARIELA, KROEGER, S., VERO, S., SEOANE, G.A., GAMENARA, D. A concise and stereoselective chemoenzymatic synthesis of Sitophilate, the male-produced aggregation pheromone of Sitophilius granarius (L.). Tetrahedron-Asymmetry, v.24, n.19, p.1207-1211, 2013.

RAZKIN, J., GONZÁLES, A., GIL, P. Stereoselective synthesis of sitophilate and sitophilure. Tetrahedron: Asymmetry, v.7, n.12, p.3479–3484, 1996.

SAIRRE, M.I., BRONZE-UHLE, E.S.; DONATE, P.M. Niobium(v) oxide: a new and efficient catalyst for the transesterification of β-keto esters. Tetrahedron Letters, v.46, n.15, p.2705-2708, 2005.

SRIDHARAN, V. RUIZ, M. MENÉNDEZ, J. C. Mild and High-Yielding Synthesis of β-Keto Esters and β-Ketoamides. Synthesis, n.6, p.1053-1057, 2010.

SZUROMI, P. D. Grignard Reactions in Water. Science, v.289, n.5488, p.2241, 2000.

TANIGUCHI, M., FUJII, H., OSHIMA, K. Stereoselective reduction of 2-Methyl-3-oxo Ester (or Amides) with sodium borohydride catalyzed by manganese (II) chloride or tetrabutylamonium borohydride. A pratical preparation of erythro and threo-3-hydroxy-2-methyl esters (or Amides). Tetrahedron, v.29, n.48, p.11169-11182, 1993.

WANG, X., MA, L.; YU, W. Synthesis of imidazo[1,2-a]pyridines by the bis(acetyloxy)(phenyl)-λ³-iodane-mediated oxidative coupling of 2-aminopyridines with β-keto esters and 1,3-diones. Synthesis, v.15, p.2445–2453, 2011.

WEST, F.G., GUNAWARDENA, G.U. Pseudocine substitution via internal delivery. Formal cyclopentadienone-ketone Michael adducts from 4-hydroxycyclopentenones. J. Org. Chem., v.58, n.19, p.5003–5044, 1993.

YADAV, J.S., REDDY, B.V.S., KRISHNA, A.D., REDDY, C. S.; NARSAIAH, A.V. Triphenylphosphine: An efficient catalyst for transesterification of β-keto esters. J. Mol. Catal. A: Chem., v.261, n.1, p. 93–97, 2007.




DOI: https://doi.org/10.15628/holos.2016.4675



 

HOLOS IN THE WORLD