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ABSTRACT 
In many cases problems in silos may occur due to 
improper design of its geometry due to the non-
consideration of the flow properties of the material. One 
of the factors that affect the flow properties of materials 
is the moisture content, which allows the formation of 
cohesive arches in the material inside the silo avoiding 
the desirable mass flow type. Therefore, this paper aimed 
to analyze the flow properties of the red mud, for 
different moisture levels, in order to design a hopper that 
provide a mass flow in conical silos. Initially, the flow 

properties of red mud were determined by laboratory 
testing using the Jenike shear tester, and then the design 
of the silo hopper was performed using Jenike and Enstad 
theories, i. e., the minimum diameter and angle of 
inclination of the hopper were determined for each 
moisture level. In order to validate the theoretical results, 
experimental results were obtained in laboratory for red 
mud powder using acrylic silos with different hoppers. 
The experimental results were found in good agreement 
with the theoretical results. 
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DIMENSIONAMENTO DE TREMONHAS CÔNICAS PARA FLUXO MÁSSICO - O CASO 
DA LAMA VERMELHA 

RESUMO 
Problemas em silos podem ocorrer, em muitos casos, 
devido ao incorreto dimensionamento de sua geometria 
por não considerar as propriedades de fluxo do material 
granulado. Um dos fatores que afetam as propriedades 
de fluxo do material é a umidade, que favorece a 
formação de arcos coesivos no material no interior do silo 
impedindo o fluxo mássico desejado. Portanto, este 
artigo objetivou analisar as propriedades de fluxo da lama 
vermelha, para diferentes teores de umidade, com o 
intuito de dimensionar a tremonha cônica de silos para 
fornecer um fluxo mássico do material. Inicialmente, as 

propriedades de fluxo da lama vermelha foram obtidas 
em laboratório utilizando a Célula de Cisalhamento Tipo 
Jenike e em seguida o dimensionamento da tremonha do 
silo foi realizado usando as teorias de Jenike e Enstad, ou 
seja, o diâmetro mínimo de descarga e o ângulo de 
inclinação foram determinados para cada teor de 
umidade. Ensaios em laboratórios usando silos de 
acrílicos com diferentes tremonhas foram realizados e os 
resultados experimentais apresentaram boa 
concordância com os resultados teóricos. 
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1 INTRODUCTION 

The mineral sector in Brazil plays a key role in economy of the Country. However, the 

extraction of mineral substances can cause environment problems. Red mud is a solid waste 

produced in the process of alumina extraction from bauxite (Figure 1). In order to reduce the 

amount of stored red mud, several applications have been studied such as brick production (Silva 

Filho et al., 2007; Mercury et al., 2010; Souza, 2010), removal of dyes from textile effluents (Silva 

Filho et al., 2008), and recovery of iron and titanium (Souza, 2010; Liu and Li, 2015). 

 

 

Figure 1: Picture of an industrial plant of bauxite processing showing the red mud deposit (Souza, 2010). 

 

For any application of red mud it is common to store it in silos before treatment. Therefore, 
silos must be correctly designed for this purpose. Typically, there are two modes of product flow 
patterns to consider for the design of silos and hoppers – mass flow and funnel flow (Jenike, 1964). 
In mass flow (Figure 2a), during discharge, the first portion of the granular material entering the 
silo is the first to exit through the hopper outlet, i.e. it provides first-in, first-out flow with all of the 
material in motion during discharge. In funnel flow (Figure 2b), part of the product discharges 
through a preferential flow channel formed within the material in the silo, while the rest of the 
material remains stationary forming stagnant zones. 

 

 

a)     b) 

Figure 2: a) Mass flow; b) Funnel flow. 
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The mass flow is the uniform flow, which is preferred in design of silos. The funnel flow is 

acceptable if the bulk solid is coarse, free-flowing, not prone to cake, and if segregation is not 

important (Marinelli and Carson, 1992). Thus, in these conditions, the funnel flow can be used 

mainly where low headroom is required (Chase, 2006). However, the funnel flow is the situation 

where most of the problems of silos can occur.  

In this context, this paper focuses on the characterization of flow properties of the red mud, 

for different moisture levels, in order to design hoppers of conical silos for mass flow. It is 

important to emphasize that the moisture content in the material can significantly alter the flow 

properties of these material.  

The design of the hopper was developed based on the methodology proposed by Jenike 

(1964) where initially the hopper slope is found in order to guarantee the mass flow, and then the 

minimum size of the outlet opening of the silo is determined to avoid cohesive arching (Lopes Neto 

and Nascimento, 2013). From the Jenike approach, other researchers have published their design 

methodologies for mass flow, for example Enstad (1975), Arnold and McLean (1976a,b) and Walker 

(1966). Thus, in this work, the minimum outlet diameter is also determined by the Enstad's 

methodology (1975). In order to validate the theoretical results, experiments were performed in 

laboratory using acrylic silos using hoppers with different geometries. 

2 FLOW PROPERTIES DETERMINATION 

In Jenike theory, for a bulk solid flow in a hopper, it is necessary to know the shear stresses 

needed to initiate the flow. This means to identify the Yield Limit or Instantaneous Yield Locus (IYL) 

or simply Yield Locus (YL) in shear stress () versus normal stress () diagram. The YL is the envelope 

curve tangent to all Mohr stress circles which represents stress state at which the bulk solid starts 

to flow (Jenike, 1964). Several Mohr circles may be drawn that are tangent to YL. However, in order 

to identify the mainly properties to define the flowability, it is suffice only two circles. The first is a 

Mohr circle passing through the origin of the , - diagram (Figure 3). This circle represents the 

bulk solid state stress to initiate the flow, i.e. to cause the arch to collapse in a silo (Chase, 2006). 

The diameter of this minor circle is the “unconfined yield stress” (c). The second Mohr circle 

comprises the critical point (end point) of the YL. This circle represents the state of the material at 

the “compacting stress” or “consolidation stress” (1) (Figure 3). It is worthwhile to mention that 

the normal stresses in the Mohr circles for bulk solids analysis are positives for compression 

stresses and the shear stresses are all positives. That is why only positives semi-circle are plotted 

in the analyses. 

Figure 3 shows both semi-circles which define c and 1. The shape of an YL is a curve, but 

for practice reasons this curve is approximated by a straight line. The angle i is the internal friction 

angle, which defines the slope of the linearized YL. The point that the straight line intercepts the y 

axis is the cohesion (c). The straight line passing through the origin that is tangent to the largest 

Mohr circle at the end-point of yield locus (E) is the effective yield locus (EYL) and the effective 

angle of internal friction (e) is the slope of EYL (Chase, 2006; Shamlou, 1990; Chaves, 2011). 
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Figure 3: Yield locus for consolidate bulk solid. 

 

The c, 1 and a YL are obtained using a shear tester. The most popular shear tester is the 

Jenike Shear Tester (Figure 4 and Figure 5) and the Ring Shear Stress (Schulze, 2007; Koynov et al., 

2015; Sun, 2016). The Jenike apparatus can also be used to measure the wall friction angle as 

shown in Figure 4b. The procedures for both tests (material/material and material/silo surface 

material characterization) can be found in D6128-97 ASTM Standard (ASTM, 1997). Figure 5 shows 

the Jenike tester used in this work. In Figure 5 can be noted the red mud inside the ring. 

The YL (or IYL) is function of the consolidation state of the material. Performing several tests 

in a shear tests using different consolidation stresses, we can find different YLs. In Figure 6a we can 

see different Mohr semi-circles representing several state stresses that give different compacting 

stresses 1, different unconfined yield stress c and different YLs. For each YL we have one c, 1 

pair. The plot of these pairs in a 1, c – diagram defines the flow function FF or instantaneous flow 

function (see Figure 6b, where FF is not necessarily a straight line as shown). 

 

Figure 4: Jenike tester - a) material/material test; b) material/wall test (Chase, 2006). 
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Figure 5: Jenike shear tester used in this work 

 

 

Figure 6: a) Mohr semi-circles representing several state stresses; b) The flow function (McGlinchey, 2008). 

The flow function FF is the curve c(1) that represents the stress needed to make an arch 

collapse (in a hopper of silo) as a function of the major compacting stress. Stresses below the FF, 

the arch is stable. For points above FF, the material is flowing (Chase, 2006). The more the material 

is cohesive, the larger is c. Non-cohesive materials have small c values. 
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3 SILO DESIGN FOR FLOW BASED ON JENIKE'S AND ENSTAD´S THEORY 

Jenike's approach (Jenike, 1964) for determination of hopper slope for mass flow is based 

on the calculation of stresses in hoppers. With the conditions of equilibrium applied to an 

infinitesimal volume element of bulk solid in the hopper, Jenike derived two partial differential 

equations. Solution of the system of differential equations exists only for specific combinations of 

the parameters c, e, and x, i.e., the conical hopper slope, effective angle of internal friction, 

and wall friction angle, respectively. The combinations of these parameters determine the flow 

characteristics in the hopper, as shown in Figure 7. The e and x are obtained experimentally using 

a shear tester.  

The next step in Jenike's approach is the determination of the minimum diameter of the 

hopper to avoid arching. If a cohesive arch has formed in a hopper, a force resulting from the 

weight of the bulk solid is transfered to the hopper walls. This effect is represented by the major 

stress required to support a stable bulk solid arch, σ1'. The ratio ff= σ1/σ1' is called flow factor. 

Jenike provided diagrams for an easy determination of hopper angle (Figure 7) and the flow factor 

(as function of wall friction angle, hopper slope, and effective angle of internal friction), as shown 

in Figure 8 (for e =40o and e =50o). 

 

 

Figure 7: Mass flow diagram for conical hopper (Schulze, 2007). 

 

Once we have defined the flow factor (ff) we can obtain the stress 1' as a function of stress 

1 (the slope of the straight line is the arctan of the inverse of ff). On the same graph, we can insert 

the flow function curve (FF). At the intersection of the both curves we have the point representing 

the critical unconfined yield stress c,crit, as shown in Figure 9. For values 1' above c, the flow 

occurs, which corresponds to the region to the right from the point of coincidence between the FF 

and inv(ff). 
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Figure 8: Flow factor, ff, for conical hoppers - a) e = 40°; b) e = 50° (Schulze, 2007). 

 

 

Figure 9: Criterion of flow and non-flow. 

 

Other possibility to calculate the flow factor is by Enstad's theory (1975) with the equations 

below. First it is defined the function F(c), which takes into account the effects of variation of the 

thickness of the arch with the silo geometry and the hopper angle. 

c

c c

   
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Then, the flow factor is determined by: 
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(6) 

m=1 for conical hoppers and m=0 for wedge-shaped hoppers; φ𝑤 is the wall friction angle;  𝜑𝑒 is 

the effective angle of internal friction; c is the hopper angle to vertical. 

Once we have calculated ff and determined the critical unconfined yield stress c,crit, the 

minimum diameter (B) of the conical hopper can be found by (Jenike, 1964; Schulze, 2007): 

c c,crit1000 H( ) 
B =

9,81 

σ

ρ
 

(7) 

where:  

c180 
H = 2 +

60π
 (8) 

4 RESULTS AND DISCUSSION 

The shear tests were performed according to ASTM (D6128-97) standard. The red mud 

particle size analysis was performed by sieving method by which can be concluded that the red 

mud is composed mostly of fine particles, characterized as a cohesive product with average 

diameter equal to 0.149mm. It was used the red mud with four different levels of moisture (1%, 

7%, 10%, and 13%). For each moisture level of the material, the Mohr circles were obtained for 

different levels of pre-consolidation stresses. Figure 10 shows one of these results. The figure 

shows the Mohr circles obtained for 1% of moisture and 𝜎𝑝𝑟𝑒 = 8.3 kPa. 

 

Figure 10: Mohr circles for 1% of moisture and 𝝈𝒑𝒓𝒆 = 𝟖.𝟑 kPa. 
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In order to determine a definitive effective angle of internal friction, for each moisture, it is 
necessary to join the end-points (E) of the individual yield locus by the best straight line that pass 
through the origin, and measure its slope (Shamlou, 1990). In Figure 11, we can see the four angles, 
one for each moisture. 

 

 

Figure 11: Effective angle of internal friction for different moistures of red mud. 

 

By Jenike cell shear tests it was possible to calculate the density, effective angle of internal 

friction and wall friction angle for red mud (showed in Table 1). For the determination of the angle 

of friction between the red mud and silo wall, acrylic surfaces were used in the tests with Jenike 

shear tester. 

 

Table 1: Effective angle of internal friction, wall friction angle and density as function of moisture of red mud. 

Moisture (%) e(°) w(°) ρ kg/m³ 

1.0 49.63 19.86 1321 

7.0 56.10 19.21 1342 

10.0 58.37 18.88 1347 

13.0 60.44 18.72 1353 

 

According to Table 1, by Jenike's theory, it was possible to find the hopper slope angle to 

obtain mass flow. Jenike's theory recommends always decrease three to five degrees of hopper 

slope angle to avoid turbulences on flow pattern. The flow factor can be found through Jenike's 

charts or Enstad's theory. Through the crossing of flow function (FF) and flow factor (ff) of the 

material for different moistures, the critical stresses for each moisture were obtained and the 

critical diameters were determined (Table 2). Figure 12 shows the diameters values for a silo 

depending on the moisture, calculated according to Jenike's and Enstad's theories. It can be seen 

that the Jenike values are more conservatives than Enstad values. 
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Table 2: Results of hopper design. 

Moisture (%) 1 7 10 13 

Θ𝑐  (°) 23 24 23 23 

Theory Jenike Enstad Jenike Enstad Jenike Enstad Jenike Enstad 

ff 1.5 1.2749 1.4 1.2043 1.4 1.1884 1.3 1.1734 

𝜎𝑐,𝑐𝑟𝑖𝑡  (kPa) 1.45222 0.941882 0.419295 0.362659 0.752684 0.541352 0.582342 0.524882 

B (m) 0.2671 0.1732 0.0764 0.0661 0.1358 0.0976 0.1046 0.0942 

 

 

Figure 12: Critical outlet as function of moisture. 

 

Figure 12 shows that in a range of 1 to 13% of moisture, with 1% of moisture it is necessary 

the larger outlet diameter on hopper, and the easier flow is for 7% of moisture. After 7%, there is 

an increase in the difficulty of red mud flow. 

In order to verify the theoretical results, experiments were performed in the laboratory 

using a silo made of acrylic (for better visualization of the flow), in this silo it is possible to change 

the hopper. Therefore, five kinds of hoppers were used in tests, all of them with hopper angle 

equal or higher than 30°. For each hopper it was tested the flow of the red mud for three different 

values of moisture (1%, 7% and 13%). 

The experiments using different acrylic hoppers resulted on funnel flow when arching did 

not occur. The results confirm the theoretical prediction. Figure 13 shows pictures of those 

experiments. The pattern of flow at the discharge of the red mud, in all experiments, was found to 

be the funnel flow type. That fact confirms the theory that the mass flow did not occur when 

inclination is higher than approximately 23°. 
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Figure 13: Flow on acrylic silos. 

5 CONCLUSIONS 

This paper shows methodologies to design conical hopper in order to avoid arching in silo 

discharge. The material used in the study was the red mud (bauxite residue), which proved to be a 

difficult flowing material, with major facility of flow approximately on 7% of moisture (within the 

analyzed range, from 1% to 13%). The methodology presented to derive the hopper slope for mass 

flow was the Jenike diagram. For minimum discharge diameter for avoid arching, it was used two 

methodologies: Jenike's theory and Enstad's theory. According to the theoretical results, the Jenike 

theory is more conservative. The results showed that for acrylic silos, in order to have a mass flow 

of the red mud, the hopper should have a slope Θ𝑐 smaller or equal 23° and a minimum discharge 

diameter of 0.2671m for range of 1% to 13%. In order to verify the theoretical results, experiments 

were performed in laboratory using acrylic silos. As all hoppers have hoppers angle equal or higher 

than 30°, then the pattern of flow, in all experiments, was found to be funnel flow type, which 

agrees with the theory. 
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