

BIOLOGIA DE SISTEMAS DE DEINOCOCCUS DESERTIS

J. S. Oliveira¹, I. B. Ferreira² e F. T. Duarte³

E-mail: julioooriginal@hotmail.com¹; igordartvader@hotmail.com², fabio.duarte@ifrn.edu.br³

RESUMO

A *Deinococcus deserti é* microrganismo e foi isolado recentemente a partir de areias superficiais no Deserto do Saara, um ambiente extremo, com escassez de nutriente, intensa exposição à radiação ultravioleta, ciclos de temperaturas extremos e dessecação. *D. deserti* pertence família Deinococcaceae, a qual é composta por um grupo de organismo caracterizado pela excepcional habilidade de sobreviver a agentes lesivos ao DNA, incluindo radiação ionizante, luz UV e dessecação. Foi de nosso interesse realizar uma análise de biologia de

sistemas da bactéria *Deinococcus desertis* tentando identificar as proteínas chaves (*Bottlenecks*) em um mapa proteômico de referencia. Visando entender melhor a resposta fisiológica as mudanças ambientais de *D. deserti*. A análise de biologia de sistemas revelou três *bottlenecks, sendo eles representados pelas proteínas* GroL, GlyA e Pyk. Os resultados sugerem, que *D. deserti* só ativa sua eficiente resposta ambiental em condições estressantes.

PALAVRAS-CHAVE: biologia de sistemas, extremófilo, Deinococcus desertis.

SYSTEMS BIOLOGY OF DEINOCOCCUS DESERTIS

ABSTRACT

The *Deinococcus deserti* is microorganism and was recently isolated from the surface sands of the Sahara Desert, an extreme environment with nutrient scarcity, intense exposure to ultraviolet radiation, temperature cycling and extreme desiccation. *D. deserti* belongs to family Deinococcaceae, which is composed of a group of organisms characterized by exceptional ability to survive DNA damaging agents including ionizing radiation, UV light and drying. We were interested to conduct a system

biology of the bacterium *D. deserti* trying to identify key proteins (Bottlenecks) in a proteomic reference map. Aiming to better understand of physiological response to environmental changes of *D. deserti*. A systems biology analysis revealed three bottlenecks, they being represented by proteins: Grol, glyA and Pyk. These results suggest that *D deserti* only activates its efficient environmental response in stress conditions.

KEYWORDS: systems biology, extremophile and *Deinococcus desertis*..

1 INTRODUÇÃO

A *Deinococcus deserti* pertence à família Deinococcaceae que compreende mais de 30 espécies num único gênero. Esta família é composta por um grupo de organismo caracterizado pela excepcional habilidade de sobreviver a agentes lesivos ao DNA, incluindo radiação ionizante, luz UV e dessecação. A *D. deserti é* microrganismo e foi isolado recentemente a partir de areias superficiais no Deserto do Saara, um ambiente extremo, com escassez de nutriente, intensa exposição à radiação ultravioleta, ciclos de temperaturas extremos e dessecação. Nessas amostras de areia a partir do qual foram isolados *D. deserti* foram também "enriquecido" com tolerância à exposição à radiação gama de 15kGy de radiação. A classificação taxonômica dessa espécie adveio baseado em sequência do gene do RNA ribossomal 16S e hibridação de DNA-DNA, a nova estirpe *D. deserti* mostrou pertencer ao gênero Deinococcus (DE GROOT, *et al.* 2005). Tal como os demais membros do gênero Deinococcus, *D. deserti* é não-patogênicos e não possui motilidade (MAKAROVA, *et al.* 2005).

As colônias de *Deinococcus deserti* crescem uniformente, esbranquiçadas, circulares, com raio de 0,5-1mm quando cultivadas em caldo tripticase soja (TSB) a 30 °C, no entanto, não apresenta crescimento em meio enriquecido. *D. deserti* é um organismo aeróbio obrigatório tem propriedade protease e catalase positiva igualmente aos demais membros do gênero Deinococcus spp. (DE GROOT, *et al.* 2009).

Para entender melhor como a vida está adaptada a estas condições ambientais específicas, De GROOT, et al. (2009) submeteram Deinococcus deserti ao seqüenciamento do genômico e caracterização do proteoma. O seu genoma possuiu 4,7 Mbps é constituído por um grande cromossomo e três mega-plasmídeos. A análise de proteoma detectou 1348 proteínas o que corresponde a 39% do proteoma teórico. A genômica e proteômica comparativa de D. deserti e outros membros da Deinococcus revelou várias sequências de genes e proteínas importantes na sobrevivência em diversas condições adversas. Também, elucidou alguns mecanismos que levam a extrema capacidade de tolerância a radioactivos, do gênero Deinococcus. Essas descobertas podem ser exploradas para fins práticos, tais como limpeza e de estabilização de depósitos de resíduos radioativos (MAKAROVA, et al. 2001).

Dessa maneira, uma vez estado disponível os dados proteômicos e genônicos, foi de nosso interesse realizar uma análise de biologia de sistema, visando identificar proteínas chaves em um mapa proteômico de referencia de *D. deserti.* Esta análise poderá elucidar melhor como esse organismo responde aos estímulos ambientai em um ambiente hostil.

A biologia de sistemas é um ramo da biologia que procura unir de forma sistemática o macroscópico (botânica, zoologia e ecologia) ao microscópico (biologia molecular, genética), ou seja: investigar, de forma sistemática, a maneira que ocorrem os processos celulares (transcrição, tradução, homeostase de metabolitos e outras moléculas, ciclo e divisão celular), afim de que possa haver a existência de vida ao nível da célula, do tecido, do órgão, do organismo e do ecossistema.

2 METODOLOGIA

De GROOT, et al. (2009) submeteram *Deinococcus deserti* ao sequenciamento do genômico e caracterização do proteoma. Dos dados dos proteoma de *D. deserti* estão disponíveis no NCBI (National Center for Biotechnology Information) onde foi possível obter os códigos das ORFS a serem analisadas (http://www.ncbi.nlm.nih.gov/).

Inicialmente os códigos das ORFS foram submetidos à plataforma online STRING (http://string-db.org/) para elaboração dos interatomas os quais estão representadas as ligações proteína-proteína (SZKLARCZYK et al., 2011, KUHN et al., 2009).

O interatoma gerado foi submetido para analise no software Cytoscaspe 2.8.3(SMOOT, 2011) no qual foi possível identificar os principais clusters que compõe o interatoma, através do uso do plugin Mcode (BADER e HOGUE, 2003). Sendo considerado como um cluster válidos os que possuíssem score superior a 2,5. A fim de identificar os bottleneck que compõem o interatoma, foi obtido os dados de centralidade e *betweenness* através do uso do plugin Centiscape 1.21 (SCARDONI *et al.*, 2009).

3 RESULTADOS E DISCUSSÕES

A partir das analises feitas foi gerado um interatoma contendo 96 nós com 453 interações (Figura 3). A análise do Mcode revelou dois clusters para esse interatoma, o principal contendo 23 nós e 61 interações (Figura 1), já o secundário possui 15 nós e 38 interações (Figura 2). A relação centralidade e *betweenness* identificou três *bottlenecks* sendo eles: GroL, GlyA e Pyk (Figura 4).

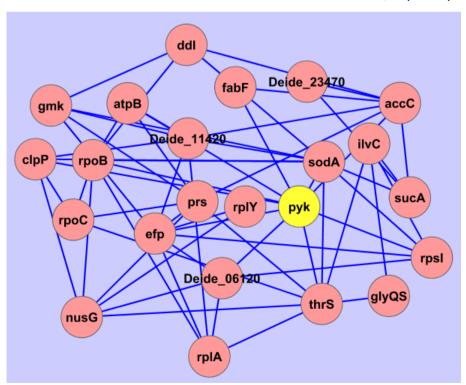


Figura 1. Interatoma que representa o cluster 1.

Tabela 1. Classificação funcional das proteínas que compõe o cluster 1.

Proteínas	Categoria funcional
accC	Biossíntese de ácidos graxos
glyQS	Biossíntese aminoacil-tRNA
fabF	Biossíntese de ácidos graxos
ilvC	Biossíntese de aminoácidos
ddl	Biossíntese de aminoácidos
thrS	Biossíntese de aminoácidos
sodA	Estresse oxidativo
atpB	Fosforilação oxidativa
pyk	Glicólise/ Gluiconeogeneses
Deide_23470	Glicólise/ Gluiconeogeneses
Deide_11420	Glicólise/ Gluiconeogeneses
gmk	Metabolism de purinas
prs	Metabolismo de purina
sucA	Oxiredução
Deide_06120	Proteína hipotética
clpP	Proteólise
rplA	Ribossomo
rplY	Ribossomo
rpsl	Ribossomo
efp	Tradução
nusG	Transcrição
rpoC	Transcrição
rpoB	Transcrição

As proteínas que compõem o cluster 1, na sua maioria são representadas por proteínas responsáveis pele metabolismo geral da célula (Tabela 1). Sendo principalmente representado pela atividade de transcrição e tradução devido à presença das proteínas: rplA, rplY, rpsl, efp, nusG, gmk, prs. rpoC e rpoB, também fica evidenciado a biossíntese de aminoácidos e ácidos graxos, representados pelas proteínas: accC, glyQS, fabF, ilvC, ddl e thrS. O metabolismo energético possui bastante destaque e possivelmente a via da gliconeogênese está ativada, uma vez que a pyk, Deide_23470 e Deide_11420, proteínas com funções relacionadas ao essa via estão presentes.

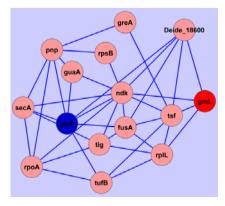


Figura 2. Interatoma que representa o cluster 2.

A presença de dois fatores de transcrição rpoB e rpoC no cluster 1 e um a rpoA no cluster 2 (Tabela 2), sugere uma propriedade de respostas rápidas a estímulos ambientais em D. deserti.

Tabela 2. Classificação funcional das proteínas que compõe o cluster 2

Proteínas	Categoria funcional
groL	Degradação de RNA
glyA	Metabolismo de aminoácidos
ndk	Metabolismo de purina e pirimidina
pnp	Metabolismo de purina e pirimidina
guaA	Metabolismo de purinas
tig	Protein de dobramento
Deide_18600	Redox celular
rpsB	Ribossomo
rplL	Ribossomo
rpoA	RNA polimerase
secA	Sistema de secreção
tsf	Tradução
tufB	Tradução
fusA	Tradução
greA	Transcrição

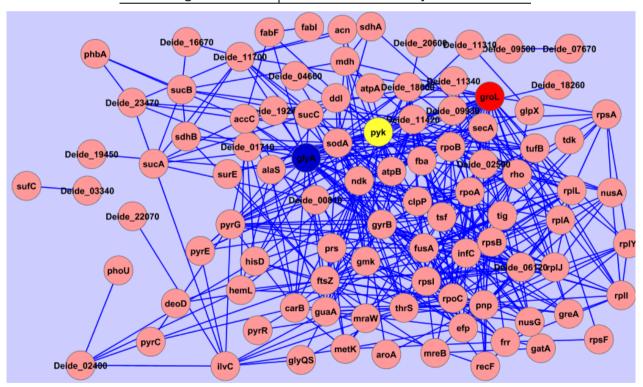


Figura 3. Interatoma feito com as proteínas detectadas no mapa proteômico de referência de D. deserti, em destaque os bottlenecks identificados.

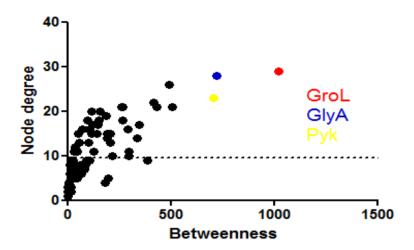


Figura 4: Gráfico representando a identificação dos bottlenecks através da relação Node degree com Betweenness.

Dentre os bottlenecks identificados (Figura 3 e 4) a GroL é uma chaperona responsável pelo dobramento de proteínas. GlyA é uma Serina hidroximetil transferase (EC 2.1.2.1), que desempenha um papel importante na célula catalisando as vias reversíveis e conversões simultâneas de L-serina para glicina. Essa reação fornece a maior parte das unidades de um carbono disponíveis para a célula. E por fim, Pyk é uma piruvato quinase (EC 2.7.1.40) é uma enzima envolvida na glicose. Ela catalisa a transferência de um grupo fosfato a partir de fosfoenolpiruvato para ADP, produzindo uma molécula de piruvato e uma de ATP.

As proteínas identificadas como gargalos de interações nos interatomas tem sua função relacionada ao metabolismo geral da célula sendo que o metabolismo energético é o mais evidenciado.

4 CONCLUSÃO

A análise de biologia de sistemas de *Deinococcus deserti* de dados gerados partindo de um proteoma de referência revelou apenas proteínas do metabolismo geral como *bottlenecks*. Como esse organismo sobrevive em ambientes inóspitos esperava-se identificar proteínas de resposta a estresse como *bottlenecks*, o que não ocorreu. No entanto, foi observado que nos principais cluster presença de fatores de transcrição o que sugere a possibilidade de uma rápida e eficiente resposta ambiental. Os resultados dessa análise então, sugerem que somente sob condições de estresse é que esse organismo possui uma resposta especializada e eficiente.

5 REFERÊNCIAS BIBLIOGRÁFICAS

BADER GD, HOGUE CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003

DE GROOT A, CHAPON V, SERVANT P, CHRISTEN R, FISCHER-LE SAUX M, et al. (2005) *Deinococcus deserti* sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55: 2441–2446.

DE GROOT A, DULERMO R, ORTET P, BLANCHARD L, GUÉRIN P, FERNANDEZ B, VACHERIE B. DOSSAT C, JOLIVET E, SIGUIER P et al.: Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet 2009, 5:e1000434.

DEDIEU A, SAHINOVIC E, GUÉRIN P, BLANCHARD L, FOCHESATO S, MEUNIER B, DE GROOT A, ARMENGAUD J. Major soluble proteome changes in Deinococcus deserti over the earliest stages following gamma-ray irradiation. Proteome Sci. 2013 Jan 15;11(1):3.

FRANCESCHINI A, SZKLARCZYK D, FRANKILD S, KUHN M, SIMONOVIC M, ROTH A, LIN J, MINGUEZ P, BORK P, VON MERING C, JENSEN LJ. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res.2013 Jan;41(Database issue):D808-15.

MAKAROVA K.., ARAVIND, L., WOLF, Y. I., TATUSOV, R., MINTON, K.., KOONIN, E., DALY, M. "Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics." Microbiology Molecular Biological Review, 2001.

SMOOT ME, ONO K, RUSCHEINSKI J, WANG PL, IDEKER T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011 Feb 1;27(3):431-2.

